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Abstract—This paper proposes a visual servoing algorithm for mobile robot navigation based on
the epipolar geometry retrieved by object profiles. The main motivation for this approach is that
for unstructured scenes the task of solving correspondences is definitely a harder task than contour
detection. An unstructured three-dimensional (3-D) scene consists mainly of objects whose most
important 2-D features are their apparent contours in the image plane. Apparent contours are used
to estimate the positions of the epipoles and some special symmetry conditions whereby the visual
servoing is able to steer the mobile robot to the desired position.
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1. INTRODUCTION

The problem of controlling the pose of a mobile robot with respect to a target ob-
ject by means of visual feedback is investigated. Visual servoing has been applied
recently to mobile robotics, see e.g., Refs [1–4]. In visual servoing, the con-
trol goals and the feedback law are directly designed in the image domain. De-
signing the feedback at the sensor level increases system performance especially
when uncertainties and disturbances can affect the robot model and camera calibra-
tion [5, 6].

Visual servoing algorithms make use of object cues whose image plane projec-
tions are controlled to desired positions through the visual servoing process. Usu-
ally, these cues are distinctive textures of objects in the three-dimensional (3-D)
scene, like corners or other easily recognizable points, see e.g., Refs [7–13]. How-
ever, it may happen that the 3-D scene does not exhibit any appropriate texture,
but only smooth surfaces whose main features consist of their apparent contours,
defined as the projection of the contour generators of objects surfaces [14]. As
pointed out in Ref. [15], if the object surface does not have any noticeable texture,
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the object profile is the only information available to estimate the structure of the
surface and the motion of the camera.

The aim of this work is to exploit object profiles to synthesize a visual servoing
algorithm. It is worthwhile to notice that, in general, tracking object profiles instead
of textures can be performed in a more robust way since solutions of correspondence
problems are not required. Moreover, it appears more appropriate to exploit profiles
in outdoor navigation where objects in the scene are highly unstructured (hills,
trees, etc.) because, in these contexts, solving correspondences is a difficult task
which usually gives rise to poor results. This work builds upon preliminary results
presented in Refs [16, 17].

Apparent contours of planar objects have been used as object cues for visual
servoing in Refs [18, 19]. Specifically, the camera motion is recovered by matching
the initial and final viewed contours, and estimating the homography matrix
between them. Then, 2.5-D visual servoing is used to steer the camera to the desired
position by exploiting the recovered camera motion. Planar objects are considered
also in Ref. [20] which proposes a visual servoing based on 3-D reconstruction. In
Ref. [21], a strategy to extract points as object cues from more natural images is
presented and used to realize 2.5-D visual servoing.

The epipolar geometry plays a key role in this work. In fact, at each time step the
apparent contours, of either planar or non-planar objects, extracted in both actual
and target views are used to estimate the position of epipoles in the image for the
planar motion case. Then special symmetry conditions on epipoles are used to
design the visual servoing algorithm in order to make a holonomic mobile robot
able to reach the desired position (where the target view was grabbed).

For a complete analysis of the epipolar geometry the reader is referred to Ref.
[22] and references therein. In Ref. [23], a visual servoing strategy for uncalibrated
cameras based on epipolar geometry is also presented. The authors assume that the
correspondences problem is solved, and use feature points and epipoles (in at least
three views) to drive the robot to the target pose.

According to the classification of visual servoing systems, presented in Ref. [6],
the approach used in this paper is known as image-based visual servoing, because
the error between the robot pose and a target object or a set of target features is
computed directly from the image features.

The present paper deals with holonomic mobile robots moving on a plane. Several
results are present in the literature on non-holonomic mobile robots. Consider, for
instance, Ref. [24] where the task of navigating a non-holonomic mobile robot
tracking an arbitrary shaped continuous ground curve is considered or Ref. [2, 4],
where a visual servoing controller is proposed for set point stabilization of a bunch
of image point features.

However, to the best of our knowledge, the confluence between epipolar geometry
and mobile robotics visual servoing is far from being fully understood and the
simplicity of results achievable for the holonomic case appears to be important at
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this rather early stage of investigation on visual servoing based on epipolar geometry
and object contours.

The proposed technique considers only scenes with static objects. In order to
analyze dynamic scenes in the epipolar geometry setting, a possible approach could
be that of using the multibody epipolar constraints and its associated multibody
fundamental matrix as proposed in Ref. [25]. Future work will investigate the
extension of the proposed technique to scenes with moving objects. Particular
attention will be devoted to the image sampling rate that can affect the performance
of the visual-servo controller.

The paper is organized as follows. Section 2 presents the model of the robotic
system. Section 3 summarizes the epipolar geometry between two views of
the same scene, focusing on the fundamental matrix and epipoles. Symmetric
conditions of the epipoles for the planar motion case are analyzed for some special
configurations. Estimation of the epipoles is discussed in Section 4 and the epipole-
based visual servoing is presented in Section 5. All theoretical results are validated
by simulations and experiments in Section 6. Concluding remarks are given in
Section 7.

2. VISUAL MODELING

Consider a mobile robot moving on a plane with a fixed pin-hole camera mounted
on it whose image plane is perpendicular to the motion plane. Refer to Fig. 1 and
let za be the optical axis of the camera–robot frame <a>. The configuration space
of the mobile robot (or of the camera) is R2 × SO(2), where SO(2) is the special
orthogonal group of 2 × 2 rotation matrices. Let (Xa Ya 0)T be the camera center
position in the base frame <b> and αa be the rotation angle of the camera–robot
with respect to the x-axis of the base frame.

Figure 1. Mobile robot with a fixed camera.
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A fully actuated holonomic mobile robot is considered:





Ẋa = ux

Ẏa = uy

α̇a = ω,

(1)

where (ux, uy)
T is the linear velocity of the camera–robot on the plane and ω is the

angular velocity.
At each time instant a couple of images are available to the visual servo loop,

i.e., the actual and the desired images. Recall that the only data available to
autonomously move the robot is the visual information contained in these two
images.

The proposed visual servoing algorithm has the aim of moving the robot from an
actual to the desired (target) pose, and is based on the epipolar geometry existing
between the pair of images grabbed at the actual and the target positions.

Henceforth we will refer to the actual and the desired camera as the robot–camera
in the actual and desired position, respectively. A pin-hole camera model is assumed
for the camera–robot whose intrinsic matrix is:

K =
[

fu 0 u0

0 fv v0

0 0 1

]

, (2)

where (u0, v0) is the principal point, fu = f κu and fv = f κv being f the focal
length and κu and κv the CCD scaling factors.

3. EPIPOLAR GEOMETRY

The epipolar geometry plays a key role in this work [22, 26]. The proposed visual
servoing technique uses object apparent contours to estimate the epipole coordinates
in order to detect special symmetry conditions of the epipolar geometry for the
planar motion case, whereby the mobile robot is steered to the final target.

The main ideas of epipolar geometry [14, 27] are recalled here. Refer to Fig. 2
and consider the actual and desired cameras with optical centers ca and cd, optical
axes za and zd, respectively. The segment cacd is referred to as the baseline and its
intersections with both the image planes define the epipoles ea and ed. Any plane
containing the baseline is referred to as an epipolar plane.

Given a pair of views of a scene and a set of corresponding image points
representing the projection of the same point P in the space, ua, ud in homogeneous
coordinates (see Fig. 2), there exists a matrix F ∈ R

3×3, referred to as the
fundamental matrix [27], such that:

uT
dFua = 0.

The fundamental matrix has rank 2 and is defined up to an arbitrary scaling factor.
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Figure 2. The epipolar geometry between two views.

For any point ua (ud) in one view the equation ld = Fua (la = F Tud) defines a line
in the other view (represented by a homogeneous 3 × 1 vector), called an epipolar
line, such that the corresponding point ud (ua) belongs to this line. Moreover, the
epipole ea (ed) lies on the null right 1-D space of F (F T).

The fundamental matrix depends on the camera parameters and relative pose
(translation and rotation) of the two views and is given by:

F = K−T EK−1,

K being the matrix in (2) and E the essential matrix:

E = [t]×R,

with [t]× the skew matrix of translation vector t and R the rotation matrix between
the two views [28].

It is useful to recall that the geometric distance between an image point ua and the
epipolar line, la = Fud, is given by:

√
(ua

TF Tud)
2

(F Tud)
2
1 + (F Tud)

2
2

, (3)

(F Tud)1 and (F Tud)2 being the first and the second components of the epipolar
vector (F Tud) [26]. Note that if points ua and ud correspond to the same feature in
the tridimensional scene then this distance is zero. Most of the algorithms used to
estimate the epipolar geometry are based on distance (3) and an exhaustive analysis
of these techniques is reported in Ref. [22].

The analysis of the epipole positions when the actual and target cameras are in
some special relative configurations is paramount for the design of the epipole-based
visual servoing.
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3.1. Symmetric case

Refer now to the planar motion case as described in Section 2. Assume that two
images are taken by the same camera, which undergoes a rotation θ about the axis
O as shown in Fig. 3.

The optical centers ca and cd are displaced at the same distance ract = rdes from
the intersection point o of the two optical axes. Moreover, image planes and camera
rotation axes are perpendicular to the epipolar plane containing o.

For pure rotations of the camera about the O-axis, the essential matrix becomes
(up to a scale factor):

E =
[ 0 cos θ − 1 0

cos θ − 1 0 sin θ

0 − sin θ 0

]

,

and if the calibration matrix is equal to the identity (u0 = v0 = 0, fu = fv = 1), it
ensues that F = E where θ is the angle between the optical axes za and zd. In this
case epipoles ea and ed, which lie in the nullspace of the fundamental matrix and its
transpose, respectively, are computed as:

ea =
[

1

tan(θ/2)
, 0, 1

]T

,

ed =
[

− 1

tan(θ/2)
, 0, 1

]T

,

(4)

and the following remark applies.

Remark 1. For circular planar displacements of actual and desired camera
positions, as in Fig. 3, a special symmetry condition holds: the u-coordinate of
the two epipoles in (4) exhibits the same modulus and opposite sign. Moreover, the
angular coefficients of the two epipolar lines tangent to the contour have the same
modulus and opposite sign.

Such symmetry condition will play a key role in designing the visual servoing
algorithm.

Figure 3. Symmetric camera displacement.
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3.2. Asymmetric case

Symmetry is not preserved in the general configuration shown in Fig. 4 where a
general rotation and translation occurs between the actual camera position ca and
the desired camera position cd. To fix notation, assume that, with respect to the
configuration of Fig. 3, the camera ca has been shifted along its optical axis by a
distance r̃ = ract−rdes. In this case, the fundamental matrix F becomes (for K = I ):

F =
[ 0 −β 0

β cos θ − γ sin θ 0 γ cos θ + β sin θ

0 −γ 0

]

,

where:

p � r̃ + rdes

rdes
= ract

rdes
,

β � 1

p
− cos θ,

γ � sin θ,

and the epipoles are given by:

ea = (αa, 0, 1)T,

ed = (αd, 0, 1)T,
(5)

with:

αa = − sin(θ)

1

p
− cos(θ)

,

αd = sin(θ)

p − cos(θ)
.

(6)

Figure 4. General camera displacement.
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For the general roto-translation displacement between the desired and actual cam-
era positions, the symmetric properties stated in Remark 1 does not apply anymore.
Detecting symmetric and asymmetric configurations will be the key feature of the
proposed visual servoing algorithm.

The assumption of K = I has been introduced for clarity of presentation and does
not affect the generality of results. In fact, symmetry and asymmetry can be easily
extended to general cameras as shown in the following remarks.

Remark 2. For a general intrinsic matrix K in (2) with any scaling factors fu

and fv and principal point (u0, v0), the epipoles are obtained scaling αa and αd in
(6) by the positive factor fu and translating the first two coordinates by the principal
point (u0, v0) as:

ea = (fuαa + u0, v0, 1)T,

ed = (fuαd + u0, v0, 1)T.
(7)

Remark 3. For general intrinsic camera matrices K , symmetry still holds for the
u-coordinates of the epipoles, provided that they are referred to the principal point.
In other terms, symmetry holds for epipole displacements so defined:

δea = (ea)1 − u0 = fuαa,

δed = (ed)1 − u0 = fuαd.
(8)

Henceforth, the camera will be supposed to be partially uncalibrated. The
visual servoing procedure will be designed for partially unknown intrinsic camera
matrices K . The only parameters which are supposed to be known are the
coordinates (u0, v0) of the principal point. In fact, once the first coordinate of
the epipole is known, only the principal point is needed to evaluate the epipoles
displacements in (8), which are the key parameters of the visual servoing design.

4. ESTIMATION OF THE EPIPOLES

Estimation of epipoles for the current and desired images is the core procedure of
the proposed visual servoing strategy. Note that, for planar camera–robot motions,
the second coordinate of the epipoles is always equal to that of the principal point
which is assumed to be known.

Many procedures are available in the literature to estimate the epipolar geome-
try [22, 26]. The focus here is on estimating the epipoles starting from two apparent
contours of the same object. Many techniques dealing with apparent contour are
available in the literature [14, 15, 29, 30]. In Refs [14, 30], the authors propose
a reconstruction algorithm from unknown translational camera motion. They use
the concept of the frontier point (i.e. the 3D point at the intersection of both con-
tour generators in two views) (see Fig. 5) to retrieve the epipolar geometry via the
Hough transform. This estimation has been also generalized to other camera mo-
tions in Refs [15, 29].
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Figure 5. Frontier point, apparent contours and epipolar tangent lines.

This section shows how these techniques can be employed to design visual
servoing for mobile robots according to the general parametrization of epipolar
geometry proposed in Section 3.

The epipole estimation phase is based on contour detection of the objects in the
scene. An interesting property of the epipolar geometry is that if the epipolar plane
is tangent to the object surface, then the corresponding epipolar lines are tangent to
the apparent contours in both the actual and desired images (see Fig. 5), and they
are called epipolar tangents. In other terms, finding the epipolar lines tangent to
the object contours in the two images allows us to straightforwardly solve the point
correspondence problem for a special point P on the surface of the object, i.e., the
frontier point.

Moreover, the perspective projection of the frontier point onto the image plane
belongs to the apparent contour and satisfies the epipolar tangency constraints [14].

Let obj be an object of the scene whose frontier point neighborhood is visible and
not occluded in both the current and desired views. Moreover, assume that the object
exhibits smooth apparent contours which are retrieved by means of segmentation
and B-splines representation [14]. Two different cases are in order: the symmetric
case (Fig. 3) and the asymmetric case (Fig. 4).

4.1. Symmetric case

Assume that only a rotation about the O-axis occurs between the current and the
desired views as shown in Fig. 3, so that the distances from the intersection of the
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Figure 6. Epipolar tangent lines for the symmetric camera displacement case. Exact (lower) and
wrong (upper) epipole estimation.

optical axes to the optical centers are equal, ract = rdes (i.e. p = 1 in (5)). According
to (6) and (7), the displacement of epipoles with p = 1 is symmetric with respect to
the principal point:

δea = w, δed = −w

being:

w = fu

sin(θ)

1 − cos(θ)
= fu

tan(θ/2)
.

In the symmetric case, the epipole motion exhibits only 1 d.o.f., the parameter w,
and Remark 1 suggests a strategy for estimating the epipole displacement w.

Consider the setup depicted in Fig. 6a–d where an object in the scene is being
viewed in both actual and desired image planes. Start with an initial guess for the
epipole displacement w, then draw a tangent to the object apparent contour passing
through this epipole guess in one view, e.g. the current view (Fig. 6a). In the
desired view, the line characterized by the opposite angular coefficient and passing
through the epipole guess in the second view (Fig. 6b) would be tangent to the object
apparent contour in the desired view only if the guess for w was exact, i.e. only if
the position of the epipoles were exact as shown in the example of Fig. 6c and d.
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The above description suggests estimating the epipole position w by solving the
optimization problem:

min
w

[
dist(la(w), ACa) + dist(ld(−w), ACd)

]
, (9)

where la(−w) and ld(w) are the corresponding epipolar lines depending on the
epipole positions, ACa and ACd are the apparent contours of the object obj, and
dist(·, ·) is the distance between a line and a contour. In other terms, problem (9) is
solved at each iteration by w and −w such that the corresponding epipolar tangent
in the current view is also an epipolar tangent in the desired view (Fig. 6). In this
way, the exact position of actual and desired epipoles is retrieved.

4.2. Asymmetric case

Consider the asymmetric case of Fig. 4 where the optical centers cd and ca are
displaced at distances rdes and ract = rdes + r̃ from the intersection of the two optical
axes, respectively. In this case, the epipole displacements (8) are not symmetric.
Unlike the symmetric case, here at least two different tangency conditions are
needed to estimate the positions of epipoles.

The relationship between the tangent lines of the current and desired images is
more involved than the symmetric case. In the asymmetric case, more than one
couple of epipolar tangents must be considered. Refer for instance to the upper and
lower epipolar tangents to the object in the scene (Fig. 7c and d). Let γ ′

1, γ
′
2 be the

Figure 7. Epipolar tangent lines for the asymmetric displacement case. Exact (lower) and wrong
(upper) estimation.
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angles between the epipolar tangents and the horizon line in the current view, and
let γ1, γ2 be the corresponding angles in the desired view. It can be easily shown
[14] that, for exact epipole displacements, the following constraint holds

tan(γ ′
1)

tan(γ ′
2)

= tan(γ1)

tan(γ2)
. (10)

Therefore, the epipole positions can be estimated by solving the 2-d.o.f. optimiza-
tion problem:

min
w′,w

[dist(l′u(w′), C ′) + dist(l′d(w
′), C ′) +

dist(lu(w), C) + dist(ld(w), C)], (11)

where l′u(·), l′d(·) are the epipolar lines in the current view, and lu(·), ld(·) are the
epipolar lines in the desired view. The main idea behind the process is to start from
an initial guess of w and w′, then build three of the four tangents (two in one view
and one in the other view), and, according to (10), draw the last line and finally
compute the distance of this line from the apparent contour. This procedure is then
repeated a further 3 times using three different initial tangents in order to compute
the cost function in (11). The goal is to find the values for w and w′ that minimize
the cost function in (11). From a numerical point of view, better results are obtained
by using more than two couples of epipolar tangents which means that the scene
should consist of more than one object. In the experiment, presented in Section 6,
two objects have been considered.

In Ref. [31], the some authors proposed a novel epipolar geometry estimation
algorithm from apparent contours that builds upon the basic idea underlying (9)
and (11). This algorithm makes use of the same parametrization proposed in
Section 3. Experimental results are also provided on general shaped 3D object.

5. EPIPOLE-BASED VISUAL SERVOING

Procedures discussed in Section 4 allow us to estimate the epipole displacements in
(8) that are here used to synthesize the proposed visual servoing to steer the robot
from the initial position to the goal. It will be shown that detecting the symmetry
condition, instead of retrieving the overall epipolar geometry, is sufficient to control
the robot motion.

The visual servoing steers the camera–robot from ca along a trajectory consisting
of a translation along the optical axis and a rotation about the axis through O and
toward cd, as shown in Fig. 8. In particular, the visual servoing algorithm steers the
robot along this trajectory in two steps:
(i) The robot starts translating along the optical axis to reach a distance from O

equal to rdes, i.e. to get r̃ = 0 (Fig. 8).
(ii) The robot moves to the desired position with a circular motion. Actually, the

trajectory would be circular only if the radius rdes were known, otherwise the
trajectory tends to a circular motion as it will be discussed in Section 5.2.
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Figure 8. Trajectory followed by the robot in the case of general planar motion.

Observe that the first step does not require any knowledge of the actual or desired
radius. In fact, let:

ma = 1

fuαa
+ 1

fuαd
= 1

δea
+ 1

δed

be defined as the sum of the inverse of the u-coordinates of the two epipole
displacements in (8). The parameter ma is a measure of the asymmetric part of
the displacements between the two views. Indeed, the following relationships hold:

ma = 0 ⇐⇒ r̃ = 0
mar̃ � 0.

(12)

Quantity ma can hence be exploited to steer the robot in the first step, e.g., through
the control law:

˙̃r(t) = λma(t), (13)

where the λ is any positive gain. In fact, from (12) and (13) it turns out that the
closed loop dynamic of r̃ satisfies:

˙̃r(t)
{

> 0 if r̃(t) < 0
= 0 if r̃(t) = 0
< 0 if r̃(t) > 0,

that obviously means that r̃(t) converges to zero.
Note that the parameter ma can be estimated from apparent contours as discussed

in Section 4.
It is important to remark that the parameters ma cannot be used in (13) in the

particular case in which both actual and desired views are aligned without any
relative orientation. In fact, it results in δea = δed = 0 (see (8)) and then ma → ∞.
Note that in this case many standard techniques can be still used to detect this
particular case, such as the epipolar bi-tangency concept [23]. Then a translational
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motion based on the area of observed contours can accomplish steering the robot to
the target pose.

Moreover, note that in the particular case in which the desired camera is aligned
with the actual one (ma → ∞) then the so-called epipolar bi-tangents can be applied
to design the camera motion strategy proposed in Ref. [30].

The second step brings the robot to the desired position following a circular
trajectory. Two cases are in order.

5.1. Case I: known radius

Suppose that the radius rdes of the circular motion is a priori known. Then the
circular trajectory of the camera can be parameterized as follows (see Fig. 9):

Xa(t) = rdes cos ϕa(t)

Ya(t) = rdes sin ϕa(t) (14)

α(t) = ϕa(t) + π,

where ϕa(t) is the current camera position angle at time t . The differential
kinematics of the system is hence described by:

Ẋa(t) = −Ya(t)ϕ̇a(t)

Ẏa(t) = Xa(t)ϕ̇a(t) (15)

α̇a(t) = ϕ̇a(t),

where ϕ̇a(t) is the control parameter steering the linear and angular velocity in (1).
To design the visual servoing algorithm, the control parameter ϕ̇a(t) must be

computable from the image measurement w. Observe that θ = ϕd − ϕa, thus when

Figure 9. Parametrization of a circular motion centered on the origin of frame 〈b〉 and with radius rdes.
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ϕa approaches the desired value ϕd, then epipoles go to infinity, and 1/w decreases
and tends to zero for ϕa = ϕd as shown in (4) (see also Fig. 9).

Then, a simple proportional control law of the visual measurement 1/w is given
by:

ϕ̇(t) = λ

w(t)
(16)

for some λ > 0.

5.2. Case II: unknown radius

Unlike the previous case, suppose here that the only a priori knowledge of the
motion of the camera–robot is that a circular displacement occurs between the
desired and the initial positions about an axis perpendicular to the motion plane
and passing through an unknown point of the optical axis za. The trajectory radius
rdes is unknown.

Let the initial configuration ci and desired camera position cd be as shown in
Fig. 10. Starting from an initial guess r̂0 for the trajectory radius, apply controls
ω, ux and uy (angular and linear velocities) as in (15) and (16). If r̂0 
= r (where
r = rdes), the camera leaves the circular trajectory of radius r and reaches, after
some amount of time, the new configuration c′ as shown in Fig. 10. In this new
configuration, the desired image and the current one (that taken by the camera in c′)
do not exhibit the property of symmetry discussed in Remarks 1 and 3. The epipoles
are not symmetric with respect to the rotation axis and their positions are given
by (7).

Let ms be defined as:

ms = 1

fuαa
− 1

fuαd
= 1

δea
− 1

δed
.

Parameter ms accounts for the angle θ and, as in Section 5.1, will steer the camera
along the circular trajectory with known radius. In fact, in some neighborhood of

Figure 10. Robot motion under a (circular) control law with a wrong estimation of the circular radius.
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the desired position the following properties hold:

ms = 0 ⇐⇒ ϕa = ϕd

ms(ϕa − ϕd) � 0.
(17)

In order to define the visual servoing procedure, the camera position c′, obtained
by rotating the camera the angle ψ about an estimate of the rotation center ô as in
Fig. 10, must be computed.

The general camera position and orientation c′ along the (unknown radius)
trajectory with respect to the initial position ci can be written as:

Xa(t) = (r − r̂(t)) cos ϕi + r̂(t) cos(ϕi + ψ(t))

Ya(t) = (r − r̂(t)) sin ϕi + r̂(t) sin(ϕi + ψ(t))

αa(t) = ϕi + ψ(t) + π,

where r̂(0) = r̂0, ψ(0) = 0 and ϕi identifies the initial camera position ci on the
plane. Note that the camera orientation at c′ is such that the optical axis intersects ô.
The corresponding differential kinematics are obtained by differentiating:

Ẋa(t) = ˙̂r(t)[ cos(ϕi + ψ(t)) − cos ϕi
]

− r̂(t)ψ̇(t) sin(ϕi + ψ(t))

Ẏa(t) = ˙̂r(t)[ sin(ϕi + ψ(t)) − sin ϕi
]

(18)

+ r̂(t)ψ̇(t) cos(ϕi + ψ(t))

α̇a(t) = ψ̇(t).

Then, it turns out that control law:

˙̂r(t) = λrma(t)

ψ̇(t) = −λams(t),
(19)

where λr and λa are positive gains, is locally asymptotically stable around the
camera desired position. In fact, since (12) holds, r̂(t) converges to r analogously
to r̃(t) that converges to zero under (13). Then, there exists a neighborhood of the
equilibrium point (the desired camera position) where (17) holds and, hence, where
ϕa converges to ϕd since:

ϕ̇a(t) = ψ̇(t)

{
> 0 if ϕa(t) < ϕd

= 0 if ϕa(t) = ϕd

< 0 if ϕa(t) > ϕd.

Note that the parameters ma and ms can be estimated from apparent contours as
discussed in Section 4.

Figure 11 shows the trajectories followed by the camera for four different initial
estimates r̂0 of the unknown circular radius r = 1. Control parameters were set to
λr = 1 and λa = 0.1.
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Figure 11. Trajectories followed for different initial estimates r̂0: 0.1r , r , 2r and 3r (decreasing
order).

Remark 4. The roto-translational trajectory in Fig. 8 enjoys the property that the
initial configuration can be chosen such that the objects in the scene are close to the
image center. This allows us to easily keep the apparent contours of the objects in
the field of view during the overall motion. Keeping the feature in the field of view
is paramount for successfully executing the visual servoing procedure. Moreover,
note that a different approach as performing a rotation first and a pure translation as
the second and last action would fail since for pure translated cameras the epipoles
go to infinity, thus vanishing the proposed control actions.

6. SIMULATIONS AND EXPERIMENTS

Simulation results are reported to validate the proposed visual servoing algorithm.
General planar motion was tested. The initial and final robot–camera configurations
are

(
Zci

Xci

αci

)

=
( −0.866

−0.5
π/3

)

;
(

Zd

Xd

αd

)

=
( −0.866

0.5
2π/3

)

.

The pure translation moves the robot along the optical axis from ca to the
intersection ci with the circle passing through cd and centered on o. From this point
the robot–camera starts to rotate as described in Section 5.2. This second part of the
trajectory, which steers the mobile robot to cd, strongly depends on the initial guess
of the unknown radius r . Simulations are reported in Fig. 12: the solid line (dashed
line) corresponds to an initial guess which is 3 (0) times the true value. Control
parameters are set to λ = 1, λr = 1 and λa = 0.1.

A second simulation was run to show system behavior for different control
parameters.

Circular motions of unknown radius were considered. Figure 13 shows the
trajectories followed for r̂0 = 3r , λa = 1 and different values of λr.

6.1. Experiments

Two experiments were run to validate the proposed visual servoing procedure.
The experimental testbed consists of a mobile robot mounted with a fixed camera
mounted (see Fig. 14). The robot is the Nomad XR4000, by Nomadic. The system
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Figure 12. General planar motion: r̂0 = 3r (solid line) and r̂0 = 0 (dashed line).

Figure 13. Trajectories for r̂0 = 3r and different values of λr (0.5, 1 and 2).

Figure 14. The robot XR4000 with a fixed camera mounted on top.

is steered by four independently powered wheels which allow full control of the 3
d.o.f. of the camera–robot. The motion control of the XR4000 is left to three DSP’s
and a dedicated 32-bit micro-controller. The camera is by Hitachi. As far as internal
parameters are concerned, recall that only the principal point, i.e. the image center,
is needed: (u0, v0) = (160, 120) pixels.

The scenario is that reported in Fig. 15. The objects in the scene, used to
perform the visual servoing experiment, are a football and a sphere; both of them
do not exhibit any special textures, only smooth surfaces whose main image feature
consists of their apparent contours.

6.1.1. Circular motion. As a first experiment, the epipole-based visual servoing
has been tested for the circular motion case with known radius. This preliminary
experiment was useful to validate the estimation procedures and the control perfor-
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Figure 15. The experimental setup consisting of the camera–robot and two objects with no special
image features other than their apparent contours.

Figure 16. The experimental setup configuration for the circular motion. Only the football object is
used.

mances in real cases. For the circular case only one object, i.e. the football, with its
upper epipolar tangent has been used.

The experimental layout is that reported in Fig. 16. The initial position of the
camera–robot is rotated 60◦ about the center of a circular trajectory whose radius,
equal to 1 m, is assumed to be known. The object is 0.8 m from the center of
rotation.

During the image pre-processing phase, the contour extraction and the closed
contours detection are carried out in real-time. The visual servoing algorithm,
described in Section 5.1, estimates the epipole position w in (4) from the current
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images acquired with a frequency of about 2.5 frames/s, and moves the robot
according to (15) and (16) with λ = 20 (pixel rad)/s.

After about 20 s, the visual servoing algorithm leads the control variable in (16),
practically to 0. The experiment stops with an error of a few degrees. Figure 17
shows the superimposed final and desired apparent contours. Note that the steady-
state error is caused by the chosen proportional control law. Better results would be
obtained by means of a combined proportional–integral control action.

6.1.2. General motion. The second experiment deals with a general roto-
translational motion. Both the objects, i.e. the football and the sphere, are used. The
experimental layout is that reported in Fig. 18. The initial position of the camera–
robot is rotated 60◦ about the center of the circular trajectory whose radius is equal
to 1 m and translated 1 m along the optical axis.

Figure 17. Superimposed final and desired image contour for the circular motion experiment.

Figure 18. The experimental setup for the general roto-translational motion.



Epipole-based visual servoing for mobile robots 275

During the image pre-processing phase, the apparent contour extraction and the
closed contours detection are completed by a simple procedure to solve the objects
correspondence problem.

The optimization epipole estimation phase, discussed in Section 4, is computa-
tionally more demanding than the circular case since, here, the optimization prob-
lem (11) has 2 d.o.f., which are the two epipole displacements.

All the four couples of tangent lines to the objects have been used to perform
the optimization procedure. Figure 19 shows the active contours of the two objects
and the tangents obtained for displacements w and w′ which minimize the cost
function in (11) at a certain sampling time of the visual servoing experiment. The
optimization problem is non-linear and non-convex, and the techniques used are
classical numerical global optimization methods [32].

For the general motion case, it is very important to use B-splines for apparent
contours description for two main reasons: the first one is that B-splines guarantee

(a) (b)

(c) (d)

Figure 19. Actual (a) and the desired (b) image views at a certain sampling time. Details of the
optimization procedure which ends by finding the four epipolar lines (two for every object) in the
actual view (c) and desired view (d).
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the smoothness of the contour and the second is that the contour parametrization
can be exploited in the estimation procedure.

The image pre-processing and the overall computational burden brings the sam-
pling time close to less than 1 s on a 650-MHz Pentium III.

The visual servoing algorithm is performed in two steps. During the first step,
the symmetry condition for the epipole displacement is gained through a translation
along the optical axis according to the control law (13) with λ = 30 (pixel m)/s. At
the end of the pure translation, the mobile robot approaches the circular trajectory
whose radius is unknown (see Fig. 18). Then, the second step of the visual servoing
algorithm starts. The control law is that for an unknown radius discussed in
Section 5.2. The control parameters in (19) are chosen as λr = 50 (pixel m)/s
and λa = 10 (pixel rad)/s and the initial conditions of (19) are set to r̂0 = 2 m and
ψ0 = 0 rad.

Figure 20 shows positions of the camera–robot at different sampling times during
the translation phase. Figure 21 shows the position of the robot–camera while
tracking the circular trajectory. Note that the initial guess for the trajectory radius
was 2 m, i.e. twice the real value.

Details on the optical axis orientation measured at seven sampling times are
reported in Fig. 22. Figure 22a shows the optical axis orientation at the first four
sampling times while the last three optical axis orientations are shown in Fig. 22b.
Note how the optical axis orientation tends to the orientation of the target camera–
robot.

Figure 20. Position of the camera–robot (dots) during the translation.

Figure 21. Positions (dots) of the robot–camera while tracking the circular trajectory.
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(a) (b)

Figure 22. During the circular trajectory phase, the camera–robot’s optical axis assumes different
orientations. These seven samples (the first four in (a) and the last three in (b)) show how the actual
orientation tends to the target orientation of the camera–robot.

7. CONCLUSIONS

Epipolar geometry was exploited to design an image-based visual servoing algo-
rithm for a mobile robot moving on a plane with a fixed camera mounted on the
robot. The visual servoing algorithm is based on a measure of the symmetry of
the epipolar geometry which is retrieved using image contours and tangency con-
straints, but without solving any point correspondence problem. Exploiting profiles
in visual feedback is crucial in outdoor navigation where objects in the scene are
highly unstructured and solving for correspondences is difficult. As far as the cam-
era calibration is concerned, only the principal point of the intrinsic parameters is
assumed to be known.

For the sake of simplicity, holonomic planar mobile robots have been considered.
To the best of our knowledge the confluence between epipolar geometry and mobile
robotics visual servoing is far from being fully understood, and the simplicity of
results achievable for the holonomic case appears to be important at this rather early
stage of investigation.

Simulations and experiments have been executed to validate the epipole-based
visual servoing.

Future work will investigate the extension of the proposed technique to the case
of 6-d.o.f. motion. Research will also focus on non-holonomic mobile robots and
dynamic scenes by means of the multibody fundamental matrix.
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