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Abstract— We present an image-based visual servoing strategy
for nonholonomic mobile robot equipped with a central cata-
dioptric camera. This kind of vision sensor combines lens and
mirrors to enlarge the field of view. The proposed approach,
which exploits the epipolar geometry defined by the current
and the desired camera views, does not need any knowledge
of the 3-D scene geometry. The control scheme is divided in
two steps. In the first one, the epipoles are used used together
with an approximate input-output linearizing feedback to align
the robot with the goal. Feature points are then used in the
second translation step to reach the desired configuration. Global
asymptotic convergence is proven. Simulation and experimental
results show the effectiveness of the proposed control scheme.

I. INTRODUCTION

This paper presents an image-based visual servoing (IBVS)
strategy for driving a nonholonomic mobile robot to a desired
configuration (set-point), which is specified only through a
desired image previously acquired by an on-board omnidirec-
tional camera.

In IBVS the control law is directly designed in the image
domain, does not need any a priory knowledge of the 3-D
structure of the observed scene and is robust with respect
to model uncertainties and disturbances in both camera and
robot models [11], [16]. Recently, there has been an increasing
interest in the visual control of mobile robots subject to
nonholonomic kinematic constraints. A first study of this kind
can be found in [23] where the authors propose to use a
pan-tilt camera, thus adding more degrees of freedom to the
vision sensor, to control a mobile robot with the task function
approach [6]. In [10], a piecewise-smooth visual servoing for
mobile robots is presented. In both cases, however, a metrical
knowledge of the observed scene is needed to guarantee the
convergence to the desired configuration, thus limiting the
applicability to a real context. However, the previous strategies
do not consider the visibility constraint, i.e., the problem of
keeping the relevant features in the camera field of view
(FOV). In order to solve this problem some strategies have
been investigated, e.g., based on zoom adjustment [15] or
switching control [5]. All these strategies are specifically
designed for robotic manipulators without nonholonomic con-
straints and cannot be easily generalized to take into account
nonholonomy.

A completely different approach to the visibility constraint
problem consists in using panoramic FOV provided by om-
nidirectional cameras, that naturally overcome the visibility
constraint. We will refer to these sensors as catadioptric
cameras, because they consist of a coupling between mirror
(catoptric element) and conventional cameras with lenses
(dioptric element).

Recently, applications of visual servoing using catadioptric
cameras are growing in interest. A 3-D visual servoing with
central catadioptric camera observing feature points has been
studied in [1] and extended to the case of observed straight
lines in [20]. In [4] is presented a visual servoing strategy for
mobile robots equipped with central catadioptric cameras in
which is necessary an estimation of the feature height to the
plane of motion. All these approaches suffer from the same
potential drawback, i.e., the control law is based on the inverse
of the image Jacobian and can then became singular for certain
configurations of the mobile robot or of the image feature
position.

In order to overcome these problems, we propose an IBVS
strategy for set-point global asymptotic stabilization of non-
holonomic mobile robots to a target position. The robot is
equipped with a central catadioptric camera. We only assume
to know both the image acquired at the target position (desired)
and the image at the current position (current) (see Fig. 10).
The visual servoing uses the epipolar geometry existing be-
tween the current and the desired image [9]. This work is based
on our previous contributions [17], [18] that are extended to
central catadioptric cameras.

Our control algorithm consists of two sequential steps.
The first compensates the orientation error so as to align
the robot to its target configuration and is based on the use
of an approximate input-output linearization with the system
outputs depending on the epipole values. The second step leads
the system to the target zeroing the translational displace-
ment using the distance between corresponding image points.
The resulting image-based visual servoing strategy guarantees
global asymptotic convergence with exponential rate of the
nonholonomic mobile robot to the desired configuration.

The main advantages of our approach are here outlined:
• Using the epipoles, we are able to avoid the problems

arising from local minima and singularities that arise



when using the image Jacobian. Differently from [16],
we do not estimate any relative camera displacement, but
directly exploit the kinematics of epipoles in the image
plane to design a global asymptotically stable control law.

• No metrical knowledge of the 3-D scene geometry is
necessary, because epipoles can be computed from cor-
responding feature points in the current and desired
view [9], [25].

• The visibility constraint is automatically satisfied by the
adoption of a central catadioptric camera as a vision
sensor.

The paper is organized as follows. Section II introduces
the basics of central catadioptric cameras and their associated
epipolar geometry. In Section III, the nonholonomic visual
servoing problem is formulated and the 2-step control strategy
is outlined. The first step is analyzed in Section IV, whenever
Section V describes the feature-based control law which
implements the second step. Simulation and experimental
results are presented in Section VI and Section VII, to show
the effectiveness of the proposed approach. In Section VIII,
we provide some concluding remarks highlighting the main
contributions of the paper.

II. BASIC EPIPOLAR GEOMETRY FOR CENTRAL

CATADIOPTRIC CAMERAS

Several types of catadioptric cameras satisfy the single
viewpoint constraint, i.e., the whole vision sensor only mea-
sures the light through a single point. This is necessary for
the existence of epipolar geometry and for the generation of
geometrically correct images [8]. In this case they are referred
to as central catadioptric cameras, but we will hereafter refer
to them only as catadioptric cameras, for short.

Consider the case in Fig. 1 in which a parabolic mirror
is centered at the focus O and an orthographic camera is in
front of it. Every scene point P ∈ IR3 is projected onto the
mirror surface at X ∈ IR3 through O. The image point p
(pixels) is obtained via orthographic projection of X . Note
that a function η : IR3 → IR2, dependent on known camera
calibration parameters and mirror geometry, can be defined as
a map from a mirror point X to its projection p onto the image
plane, namely η(X) = p. More details can be found in [7].

Consider now two panoramic views as in Fig. 2, acquired by
the same camera placed in O′ and O, and referred to as current
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Fig. 1. Imaging model of a catadioptric camera (e.g. orthographic camera
coupled with parabolic mirror).
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Fig. 2. Basic epipolar geometry setup for catadioptric cameras. Every
epipolar plane contains the baseline and intersects the mirror at the epipolar
conic.

and desired views, respectively. Without loss of generality,
we choose the world reference frame coincident with the one
at the desired view. Camera parameters are supposed to be
known and consequently the epipolar geometry can be directly
expressed onto the mirror surface if not otherwise specified.
The segment O O′, called baseline, intersects the two mirror
surfaces at the epipoles, namely e1 and e2 for the current
view, and e′1 and e′2 for the desired view. The epipolar plane
π intersects each mirror at the epipolar conics C and C ′. Each
epipolar conic passes through the epipoles.

Given a pair of views of a set of scene points Pi (i =
1, ..., n) there exists a matrix E ∈ IR3×3, called the essential
matrix [9], such that

Xi
T EX

′
i = 0 (1)

for all corresponding mirror points Xi and X ′
i (i.e., images

of the same point in the two views), obtained as a back-
projection of the corresponding image points pi and p′i, by
means of the inverse of η. In general, the essential matrix is
of rank 2 and is defined up to an arbitrary scale. Given at
least 5 generic correspondences E can be computed up to a
scale factor, without any knowledge of the 3-D structure of
the observed scene [9]. In presence of image noise, E can be
robustly estimated also by means of well known algorithms,
e.g., [14], [26]. We are here particularly interested in retrieving
the epipole direction in both views. We will henceforth assume
to be able to have the right guess of where is the epipole
directly pointing toward the other view (i.e., e1 and e′1 in
Fig. 2). The current and desired epipoles can then be retrieved
from the left and right null-spaces of E [9].

Remark 1: Suppose given two views p and p′, the current
and the desired, of the same 3-D scene point P , respectively.
Suppose, moreover, that only a translation t = [x y z]T occurs
between their coordinate frames (i.e., R = I). It is an easy
matter to see that, for any translational motion of the camera
along t, the epipolar conic C ′ associated with (p, p′) does not
vary and p′ will lie on it. In fact, the normal vector of the
epipolar plane does not vary for any scaling λ ∈ IR − {0},
thus keeping constant the shape of C ′.
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Fig. 3. A mobile robot with unicycle kinematics carrying a catadioptric
camera.

III. THE NONHOLONOMIC VISUAL SERVOING PROBLEM

The objective of this work is to present an image-based
visual servoing strategy that drives a nonholonomic robot
toward a desired configuration. The nonholonomic mobile
robot considered in this paper is a unicycle moving on a plane
(see Fig. 3). Its configuration vector is defined by q = [x y θ]T ,
where x, y are the Cartesian coordinates (in meters) of the
center of the robot in a reference frame {O, x, y}, being θ (in
radians) the orientation with respect to the x axis (see Fig. 3).
The nonholonomic kinematic model is

ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

(2)

where u1 and u2 are respectively the translational and the an-
gular velocity. Without loss of generality, we suppose that the
desired configuration is qd = [0 0π/2]T , which corresponds
to the robot being centered at the origin and aligned with the
positive y axis. The catadioptric camera is fixed to the robot
body in such a way that the mirror focus O′ is in [x y]T .

In the spirit of the visual servoing approach, it is henceforth
assumed that the desired camera view (i.e., the view acquired
in qd) has been gathered in advance and that the epipoles are
estimated in real-time according to the techniques described
in Sect. II. Let us consider the situation in Fig. 4. Let y1 and
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Fig. 4. The planar geometric setup used to define the kinematics of outputs,
written as a function of the epipoles.

y2 be the two outputs of the system that can be written as a
function of the epipoles e = [ex ey ez]T and e′ = [e′x e′y e′z]

T ,
expressed in the mirror frame, as follows:

y1 = −π

2
− ATAN2

{
e′y, e′x

}
(3)

y2 =
π

2
− ATAN2 {ey, ex} . (4)

The proposed image-based visual servoing scheme drives
the nonholonomic mobile robot to the desired configuration
qd in two steps (see Fig. 5):

1) From the initial configuration q0, apply a control law
that brings y1 and y2 to zero. As shown in the next
section, such a control may be computed through input-
output feedback linearization. At the end of this step
the camera-robot is in the intermediate configuration qi,
aligned with the desired one (see Fig. 5, left).

2) From the intermediate configuration qi apply another
image-based control producing a translation to qd (see
Fig. 5, right). Clearly, y1 and y2 are identically zero
in this phase and cannot be used. However, as will be
shown next, this step can be realized on the basis of
corresponding points in the images.

Roughly speaking, the first step is aimed at zeroing the
orientation error (and placing the robot along the y-axis) while
the second step compensates the translation error.

IV. FIRST STEP: ZEROING THE EPIPOLES

We here design a visual feedback for the mobile robot
in order to drive both outputs to zero and realize the first
step of our visual control strategy. To this end, after deriving
the epipole kinematics, we adopt an approximate input-output
linearization approach. For our visual servoing purposes it is
paramount to remark that these outputs can be written as a
function of the epipoles e and e′, as in (3) and (4).

From Fig. 4 it may be also seen that

y1 = y2 + θ − π

2
. (5)

Differentiating (5) we have:

ẏ1 = u2 + ẏ2. (6)

From (4), the first derivative of y2 is

ẏ2 = ėx
ey

ex
2 + ey

2
− ėy

ex

ex
2 + ey

2
. (7)

From Fig. 4, let d � (x2 + y2)1/2, being ex = λx and
ey = λy for an unknown λ ∈ IR, and x = d sin y2 and
y = d cos y2. Then from (7) it yields

ẏ2 =
u1

d
cos(θ + y2). (8)

Now, substituting (5) in (8) we get:

ẏ1 = u2 − u1
sin y1

d
(9)

ẏ2 = −u1
sin y1

d
(10)
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Fig. 5. The two steps of the proposed visual servoing strategy. (a) The nonholonomic robot is first driven to the y axis by zeroing both outputs y1 and y2.
(b) A feature-based controller is then used to recover the translation error.

The standard procedure to compute an input-output lin-
earizing control law is to differentiate the output functions
and invert, if possible, the resulting map (see [12]). From the
epipole differential kinematics (9-10), the relationship between
the control inputs and the output time derivatives is expressed
as [

ẏ1

ẏ2

]
= E

[
u1

u2

]
with E =

[ − sin y1
d 1

− sin y1
d 0

]
.

Here, we are faced with a major difficulty, i.e., the inverse
of the decoupling matrix E cannot be computed because the
parameter d (the distance between the current and the desired
robot position) is unknown in the purely image-based control
framework we are dealing with. Although this prevents from
performing an exact input-output, an approximate input-output
linearization strategy can be pursued by setting[

u1

u2

]
= Ê−1

[
ν1

ν2

]
(11)

with

Ê−1 =

[
0 − d̂

sin y1

1 −1

]
.

in which an estimate d̂ of d is used and the resulting output
derivatives are[

ẏ1

ẏ2

]
= EÊ−1

[
ν1

ν2

]
=

[
1 d̂

d − 1
0 d̂

d

] [
ν1

ν2

]

Proposition 1: Let[
ν1

ν2

]
=
[ −k1y1

−k2y
β/γ
2

]
(12)

where k1 > 0, k2 > 0 and β,γ are positive odd integers, with
β < γ. Also, update the distance estimate d̂ according to

˙̂
d = d̂k2

y
β/γ
2

tan y1
(13)

initialized at d̂0 > d0, being d0 the distance from the initial to
the desired robot configurations. Then, for sufficiently small
k2, the approximately linearizing control (11) drives both
output coordinates y1 and y2 to zero for any initial condition
with exponential convergence rate.

Proof. First of all note that the closed-loop equations under
the proposed control law are

ẏ1 = −k1y1 −
(

d̂

d
− 1

)
k2y

β/γ
2 (14)

ẏ2 = − d̂

d
k2y

β/γ
2 (15)

while the explicit expression for the control inputs in (11) is:

u1 = d̂k2
y

β/γ
2

sin y1
(16)

u2 = −k1y1 + k2y
β/γ
2 . (17)

The distance d evolves according to ḋ = xẋ+yẏ
d and using (2)

and being x = d sin y2 and y = d cos y2 we get

ḋ = u1 cos y1 = d̂k2
y

β/γ
2

tan y1
. (18)

Comparing (18) with (13), it is clear that d and d̂ obey to the
same differential equation. Hence,

d̂

d
=

d̂0 +
∫ t

0

˙̂
d dt

d0 +
∫ t

0

˙̂
d dt

= 1 +
d̂0 − d0

d
> 1



under the assumption d̂0 > d0. As a consequence, the co-
efficient of y

β/γ
2 in (15) is negative and bounded below in

modulus. This means that 0 is a terminal attractor [27] for
y2, which will converge to zero at a finite time instant t.
Then from t on, the differential equation (14) governing y1

reduces to ẏ1 = −k1y1, so that y1 will converge to zero with
exponential rate k1. As a consequence, it can be seen from (18)
that due to the zeroing of y2 at t, the robot converges at a finite
distance d after t, as shown by (18). In conclusion, note also
that (16) is never singular because u1 becomes zero after t.

It remains to be shown that the control input in (16-17) is
not singular. In fact, the linear velocity in (17) has a potential
singularity when y1 = 0. This is not a problem for t ≥ t,
for which u1 is identically zero, being y2 = 0. Before t, the
dynamics of y1 in (14) include a ‘perturbation’ term whose
effect can be arbitrarily bounded by bounding k2. Hence, for
sufficiently small k2, the output y2 can not cross zero during
the transient.

The following remarks are in order at this point.
• The above control law is purely image-based because it

only relies on the measured epipoles. No knowledge of
the robot configuration or any other odometric data is
needed.

• The particular form of the exponent of y2 in the control
law (12) is essential in guaranteeing its convergency to
zero in finite time, and then that the proposed control law
is never singular. This kind of control law is also known
as a terminal sliding mode.

• According to the above Prop. 1, it is necessary to initialize
d̂ at an initial value d̂0 > d0. To this end one may use
an upper bound on d0 derived from the knowledge of the
environment where the robot moves.

• If y1 is zero at the initial instant, then Ê−1 is undefined
in (11). Then, it is necessary to perform a preliminary
maneuver (e.g., a fixed rotation) before applying the
proposed controller, in order to attain a nonzero y1.

• The zero dynamics (i.e., the residual dynamics when
the outputs are identically zero [12]) associated with
our approximate input-output linearization controller is
obtained from (18) as ḋ = 0. That is, the robot will
converge to some point of the y axis at a finite distance
d from its desired position, consistently with the above
proof.

V. SECOND STEP: FEATURES MATCHING

At the end of the first step, both the outputs y1 and y2 are
zero and the intermediate robot configuration qi is aligned with
the desired configuration (see Fig. 5, right). We now present
the feature-based control law that realizes the second step of
our visual servoing strategy, i.e., moving the robot from qi

to qd so as to recover the translation error. As the epipole-
based controller of the previous section, also the second step
controller works directly in the camera image plane.

The basic idea consists in translating the robot until each
feature p′i (i = 1, ..., n) in the current image plane matches
the corresponding one pi in the desired image plane. A similar

approach has been proposed in [2], [24] for pinhole cameras.
As shown in Sect. II, if the relative rotation is compensated,
then during a translational motion to the target position along
the baseline, all feature points p′i converge to pi and are
constrained also to lie on the corresponding epipolar conic
C ′

i. Then the feature distance between corresponding points,
chosen as the arc-length s′i(t) between pi and p′i onto C ′

i,
will be zero when p′i = pi, i.e., when the robot reaches
the final configuration qd. In principle, only one feature is
needed to implement this idea, and therefore we will present
the controller with reference to the case n = 1. The proposed
method can be easily extended to include a larger number of
features, a convenient choice in the case of noisy images.

Proposition 2: Let the robot velocities during the second
step be defined as

u1 = −kts
′
i(t)ey (19)

u2 = 0 (20)

where kt > 0. Then the robot configuration converges expo-
nentially from the intermediate configuration qi to the origin.

Proof. We here consider that the rotation disparity with
respect to the desired robot-camera configuration has been
fully compensated during the first step, i.e., θi = π/2 that
corresponds to ex = e′x = 0.

Consider the positive definite Lyapunov function
V = (x2 + y2)/2. Note that ex = λ x and ey = λ y for
an unknown positive λ. Being ex = 0 (i.e., θ = π/2), then
the time derivative of V yields to V̇ = xẋ + yẏ = u1

λ ey .
Substituting (19) in it, we obtain V̇ = −kt s′i e2

y that is always
definite negative, being s′i(t) > 0. Note that si(t) acts as a
stop condition, because it clearly zeroes when p′i = pi.

VI. SIMULATION RESULTS

The simulation results have been performed using Matlab-
Simulink and the Epipolar Geometry Toolbox [19]. It is
assumed that five pairs of corresponding feature points are
identified in the desired and current image. The camera cali-
bration parameters [9] are fx = fy = 102 mm. and u0 = 320
pixels and u0 = 240 pixels. The unicycle robot moves under
the action of the proposed two-step visual strategy from its
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of the mobile robot. Note how the linear velocity goes to zero with y2.

initial configuration q0 = [
√

2
√

2 π/2]T to the desired one
qd = [0 0π/2]T .

First the control law in (11) is applied with k1 = 0.4, k2 = 3
and β/γ = 17/19. The initial estimate of the robot distance
has been set to d̂0 = 4 m. As shown in Fig. 6(a), both
the output coordinates y1 and y2 are driven to zero and, as
expected, the first one is zeroed in finite time t = 2 sec.
The robot trajectory for the first step is reported in Fig. 6(b)
while the resulting control inputs are shown in Fig. 7(a)-(b).
To guarantee a finite time duration of the first step, a tolerance
of 10−9 m. has been used for y1 (recall that convergence is
exponential).

The second step is then executed under the action of the
control law in (11), with kt = 104. The exponential decrease
of the distance s(t) between the current and the desired
feature points along the conic is shown in Fig. 8(a). The robot
trajectory in the second step is reported in Fig. 8(b).

VII. EXPERIMENTAL RESULTS

In order to validate the here proposed visual servoing
strategy we present some experimental results realized in our
labs. The vision sensor is a folded catadioptric mirror [3] by
Remote Reality screwed on a CCD camera by Lumenera Inc.
Such a camera can be modeled by an orthographic camera
looking at a parabolic mirror [21] modeled by the equation
zm + a

2 = x2
m+y2

m

2a where a = 33.4 mm. The mobile robot is
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Fig. 9. Experimental results. (a) Outputs variables y1 and y2 are controlled
to zero by the image-based control law; (b) Distance (in pixels) from current
to target image feature points measured on the epipolar conic.

an Pioneer 2X-DE by ActivMedia, connected to a notebook
endowed with a 2 GHz Pentium 4 processor and with 640 MB
of RAM. Orthographic camera parameters are fx = 13 mm.,
fy = 14 mm., u0 = 616.3 and v0 = 628.2 pixels. A
set of n = 9 corresponding feature points has been tracked
and used for epipolar geometry estimation using the robust
M-estimator proposed in [26]. In order to obtain a better
epipolar geometry estimation, we normalized all feature points
as suggested in [3].

Fig. 9(a) shows the outputs that are driven to zero during
the first step. Note that, due to image noise affecting the
epipolar geometry estimation, perfect convergence of outputs
to zero can not be achieved. However, as expected, y2 is
the first output to reach zero, followed by y1. After both
outputs are below (in modulus) a specified threshold (τv = 7
deg.), then the second step starts and the mean distance of
si(t) between corresponding points is used to control the
translation (Fig. 9(b)). It can be seen that it rapidly decreases
to zero, but due to image noise, to the non perfect alignment

initial
position

target
position

Fig. 10. Experimental results. The Pioneer 2X-DE robot is equipped with a
panoramic camera and correctly moves toward the target position using only
the visual information provided by the current and the desired panoramic
images.
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Fig. 11. Experimental results. Feature motion on the image plane superim-
posed to the desired image, starting from the initial features (circle) to the
desired ones (cross).

after the first step and to model uncertainties, we obtained
a final distance of about 5 pixels for each of the 9 feature
pairs. This corresponds in a robot displacement of about 2 cm
with respect to the target position. However it is our plan
to improve performances and increase robustness by setting
the proposed two-step controller in an iterative framework as
proposed in [13], [22] for nonholonomic robots. The robot
motion under the action of the proposed control law, from
the starting position to the target one, is reported in Fig. 10.
The whole feature motion in the image plane is shown in
Fig. 11 and superimposed to the desired image, thus showing
the convergence to the target image features.

VIII. CONCLUSIONS

A novel image-based visual servoing strategy has been pre-
sented for nonholonomic mobile robots. The control scheme,
which is divided in two independent and sequential steps,
drives the robot to a desired configuration specified through
a target view, previously acquired by the on-board central
catadioptric camera. A key point is the use of multiple-view
epipolar geometry during the first step in order to compensate
the rotational error and align the current view to the desired
one. In particular, an approximate input-output linearizing
feedback law is used to cope with the nonholonomic kinemat-
ics of the camera-robot system. Simulations and experimental
results have been performed in order to validate the proposed
visual servoing algorithm.
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