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Abst rac t  

Constructive necessary and sufficient conditions for dis- 
turbance decoupling with algebraic output feedback are 
presented. Necessary and sufficient conditions are also 
derived for the decoupling problem with internal stabil- 
ity. The same conditions are restated in terms of in- 
variant zeros. The groundwork throughout is the dual- 
lattice structures of invariants introduced by Basile and 
Marro in [2]. Finally, an application to mechanical sys- 
tems is presented. 

1 Introduction 

It is well known that disturbance decoupling was the 
first problem approached with geometric techniques, by 
Basile and Marro [l] and, independently, by Wonham 
and Morse (101. In the former of these papers the in- 
vestigation was extended to output feedback using a 
dynamic regulator. The same problem was refined in 
the literature by also taking into account the stability 
requirement (Willems and Commault 191 and, without 
using eigenspaces, Basile, Marro and Piazzi [3]). Any- 
way to the authors' knowledge the problems of distur- 
bance decoupling and disturbance decoupling with in- 
ternal stability using algebraic output feedback have 
not found a solution yet. 

In this work, starting off from the necessary and suffi- 
cient conditions derived in the past we determine con- 
structive necessary and sufficient conditions for the first 
problem and non-constructive necessary and sufficient 
conditions for the second one by using the geometric 
approach tools. The same conditions will be also de- 
rived by using the concept of invariant zeros first intro- 
duced by Rosenbrock [8]. 

The following notation is used. R stands for the field 
of real numbers. Sets, vector spaces and subspaces 
are denoted by script capitals like X ,  Z, V ,  etc.; since 
most of the geometric theory of dynamic system herein 
presented is developed in the vector space R", we re- 
serve the symbol X for the full space, i.e., we assume 
X := R". The orthogonal complement of any sub- 
space Y C_ X is denoted by Y l ,  matrices and linear 

maps by slanted capitals like A, B ,  etc., the image and 
the null space of the generic matrix or linear transfor- 
mation A by imA and kerA respectively, the transpose 
of the generic real matrix A by AT, the spectrum of A 
by u(A), the n x n identity matrix by I,. The restric- 
tion of map A to the A-invariant subspace C is denoted 
by AIL. Given two A-invariants C1 and C2 such that 
C1 C L2, the map induced by A on the quotient space 
Ll /L2  is denoted by AI.c~,L~. Notation 21 - 2 2  will be 
used for the difference of sets 21 and 2 2  with repetition 
count. 

2 Background and problem s ta tement  

Let us consider a system described by a five-map sys- 
tem (A, B,  C, D, E ) ,  modeled by 

k( t )  = A z ( t )  + Bu( t )  + Dd(t ) ,  ~ ( 0 )  = xo (1) 
Y(t>  = C 4 t )  (2) 
e ( t )  = E ~ ( t )  (3) 

wherea:EX (= R"), U E U  (= Rp), d E V  (= Rd), e € €  
(= R") and y E y (= R4) denote respectively the state, 
the manipulable input, the disturbance, the regulated 
output and the informative output. In the following 
the short notations B := imB, C := kerC, V := imD 
and E := kerE will be used. The problem of simple 
disturbance decoupling by means of output algebraic 
feedback is stated as follows: 

Problem 1. Given the system (1)-(3) determine, if 
possible, a feedback matrix K (having p rows and g 
columns) such that: 

z) e ( t )  = 0, t 2 0, for all admissible d(.) and for 
x ( 0 )  = 0. 

The problem of disturbance decoupling with stability 
by means of output algebraic feedback is stated as: 

Problem 2. Assume for system (1)-(3) that (A, B) is 
stabilizable and ( A ,  C) detectable. Determine, if possi- 
ble, a feedback matrix K (having p rows and g columns) 
such that: 

z) Problem 1 is solvable; 
0-7803-4394-8198 $10.00 0 1998 IEEE 3545 



ai) limt-m z( t )  = 0, for all z(0) with d(.)  = 0. 

Conditions (a) and (ia) are called respectively the struc- 
ture requirement and the stability requirement. 
The following theorem introduced by Basile and Marro 
[2] (pag. 256) is basic to solve Problem 1: 

Theorem 1. Refer to triple (A, B,C).  There ex- 
ists a matrix K such that a given subspace V is an 
( A  + BKC)-invariant if and only if V is both an (A, B)- 
controlled and an (A, C)-conditioned invariant. 

This theorem is constructive, i.e., given such a subspace 
V there exists a procedure to determine matrix K .  

Let us recall now the definitions of lattices 4(B + D, E) 
and $J(C n E ,  D) on which the next considerations will 
be based: 

#) (B+D,E)  := {VI 

A V G V + B + D ,  V C E ,  U * n ( B + D ) G V }  (4) 

is the lattice of all (A, B + 2))-controlled invariants self 
bounded with respect to E, and its supremum and in- 
fimum are given by 

V* := maxV(A, 13 + D, E) 
V ,  := V* n minS(A, E, B + D) 

(5) 
( 6 )  

respectively, while 

$(e n &,D) := {S I 

A(S n C n E) c S, D c S, S G S* + (C n E)} (7) 

is the lattice of all (A, C n &)-conditioned invariants self 
hidden with respect to D, with infimum and supremum 
given by 

S* := minS(A, C n E, D) 
SM := S* + maxV(A, D, C n E). 

(8) 
(9) 

All of the above subspaces are easily determined 
through the standard geometric approach algorithms. 

Finally Let us recall the definitions of left and right 
invertibility. Under the assumption that B and C have 
maximum rank, the triple (A, B ,  C) is said to be: 

left-invertible if and only if V,* n &3 = 8, with 
V$ := maxV(A, B, C); 

right-invertible if and only if S,* + C = R", with 
S$ := minS(A, C, B). 

3 Structural Conditions 

Let us consider Problem 1. Clearly the problem ad- 
mits solution if and only if the reachable set by d, i.e. 
the minimal (A + BKC)-invariant containing D is con- 
tained in €. By Theorem 1, Problem 1 is solvable if 

and only if there exists a subspace V so that: 

2 )  D C V C E  (10) 
ii ) V is an (A, B) - controlled invariant (11) 

iii ) V is an (A,C) - conditioned invariant (12) 

Necessary but not sufficient conditions for the existence 
of such a V are: 

v c V* 
S* C E 
S" c V* .  

The proof of the above conditions is trivial. Conditions 
(13) and (14) derive from (10) while (15) derives from 

Under assumptions (13)-(15) some very interesting 
properties regarding lattices (4) and (7) can be deter- 
mined. Under assumption (13) it can be proved that 

(11)-( 12). 

i) every subspace of lattice (4) contains D, 

ii) V* = maxV(A,B,E), 

while under (14) 

i) every subspace of lattice (7) is contained in E ,  

ii) S* = minS(A,C, D), 

as seen in [2] (pag. 225-226). 

Two very useful sublattices of (4) and (7), introduced 
in [2] (pag. 271) are: 

4~ := {V I V E 4(B + D, E), Vm C V C V M }  (16) 
$R := {S 1 S E +(C n E , D ) ,  Sm S G S M }  (17) 

where Vm and SM are given by (6) and (9) and, under 
assumptions (13)-( 15), 

VM := V ,  + SM , 
S, := V ,  n S M .  

(18) 
(19) 

From now on conditions (13)-(15) will be considered 
automatically satisfied. Using the sublattices the first 
result is stated. 

Theorem 2. Referring to (1)-(3), Problem 1 is solv- 
able if relation 

Vm C SM (20) 
holds. 

Proof: Subspaces Vm and SM are both solutions of the 
problem under assumption (20). In fact Vm satisfies 
(10)-(11), being the infimimum of 4 ( B  + D,E), and 
(12) since 

Sm := Vm n SM = V ,  + V, E +(C n E, D). (21) 
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Dually SM satisfies (10) and (12), being the supremum 
of $(C n E ,  D), and (11) since 

A' = 

VIM:=V,+SIM=SA. I jS I1 . IE~(B+D,E) .  (22) 

-Ail Ai2 Ai3 A i 4  'i5 'i6- 
4 1  4 . 2  AL3 AL4 4 2 5  AL6 

(27) 
0 0 Ai3 0 Ab3 Ab6 

Ai1 O O A&4 Ai5 A&6 ' 
0 0 0 0 Ab5 Ab6 

- A& 0 0 Ak4 Ak5 Ab6 - 

0 

This very interesting result has been derived without 
any assumption on the system's invertibility. Unfortu- 
nately condition (20) is only sufficient. It becomes both 
necessary and sufficient if the system in hand is both 
left and right-invertible, as stated in the following: 

Theorem 3. Let the given system be both left- 
invertible with respect to U and right-invertible with 
respect to y. Problem 1 is solvable if and only if rela- 
tion (20) holds. 

Proof: (Only if) Being the system left and right- 
invertible all ( A ,  13)-controlled invariant subspaces are 
also self bounded with respect to E and all (A,C)- 
conditioned invariant subspaces are also self hidden 
with respect to D. This means that any subspace solv- 
ing the problem, i.e. satisfying conditions (10)-(12), 
must be an element of both 4(B+D, E )  and $(CnE, D). 
Clearly if relation (20) is not satisfied then lattices (4) 
and (7) have no intersection and so the problem has no 
solution. 

0 

It is important to note that hardly the systems in hand 
are both left and right-invertible. If one of these as- 
sumption fails relation (20) is not necessary anymore. 
Anyway we are able to state new necessary and suffi- 
cient conditions for the solvability of the problem: 

Theorem 4. Let the given system be left-invertible 
with respect to input U .  Problem 1 is solvable if and 
only if V, is an (A, C)-conditioned invariant. 

Proof: (Only if) By the left invertibility assumption 
V* n B = 0. This means that every (A, 23)-controlled 
invariant is self bounded with respect to E .  This means 
that a subspace V satisfying properties (10)-(12), has 
to be searched for in 4(B + Do,&). We want to show 
that if such a V exists then V,  is an (A, C)-conditioned 
invariant. Being U an element of 4(B + D, E ) ,  hence 
V ,  C_ V ,  it follows that 

(If) Implied by Theorem 2. 

(V,nC)c ( V n C ) = . A ( V , n C ) G A ( V n C )  (23) 

and, being V an (A, C)-conditioned invariant, 

A(V,nC) C A ( V n C )  C V .  (24) 

On the other hand, V,  being an (A, B)-controlled in- 
variant implies that 

A V ,  c V,  + B + A (V, n C) c V ,  + B. (25) 

The two relations above show that A (V, n C) is in- 
cluded in the intersection of subspaces V and V ,  + B, 

hence 

A ( V m n C )  C 
(V, + a) n V = (V n V,) + (a n V )  = V ,  (26 )  

since V, C V and since V* n B = 0 + V n B = 0. 
0 

Corollary 1. Let the given system be right-invertible 
with respect to output y. The disturbance decoupling 
problem with algebraic output feedback is solvable if 
and only if SM is an (A, B)-controlled invariant. 

(If) Obvious by virtue of (10)-(12). 

Proof: Dual to proof of Theorem 4. 0 

All of these conditions are easily checkable through 
appropriate algorithms and are constructive, meaning 
that, when a subspace satisfying Theorem 1 has been 
determined, it is easy to obtain a matrix K solving the 
problem. 

The following decomposition, which can be applied to 
a system satisfying statements (13)-(15), is very useful 
to prove the next statements. 

C' = [Ci 0 0 c; cg CL] , 

E'= [ O O O O O E A ] .  (30) 

(29) 

Note that this representation has been obtained with- 
out any assumptions on either left or right invertibility 
for the system. 

This decomposition becomes more simple if the system 
is left or right-invertible, In the former case matrices 
Bi, Bi and B; are zero while in the latter matrices 
Ci, Cg and Ck are zero. Using this decomposition we 
derived the following Corollary (proved in [5]). 

Corollary 2. Let the system be SISO and either left or 
right-invertible. Problem 1 has in general no solution. 
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This is a clear example of how regulators using alge- 
braic output feedback work. For the disturbance decou- 
pling to have a solution using this kind of feedback it 
is obviously necessary that the same problem has a so- 
lution through state feedback, but this is not sufficient. 
In fact it is also necessary to use "enough" outputs 
to evaluate "enough" state variables, since through al- 
gebraic output feedback we have no information on x. 
SISO systems, in general, have too few outputs to solve 
the problem using this kind of regulator. Clearly, ex- 
tending the rank of matrix C, which on a practical 
level means using more sensors, increases knowledge of 
state 5 and consequently the chances that Problem 1 
is solvable. 

In the most general case of a system being neither left 
nor right-invertible we are only able to state a construc- 
tive sufficient condition as seen in Theorem 2. Anyway 
if relation (20) does not hold, as it often happens, the 
following result is very useful for the search of a resol- 
vent: 

Proper ty  1. Problem 1 admits a solution iff 

i) V ,  is an (A, C)-conditioned invariant, or 

ii) SM is an (A, B)-controlled invariant, or 

iii) a subspace V being both an (A, B)-controlled in- 
variant and an (A, C)-conditioned invariant exists 
such that S, c V C V ,  or SM c V c V M .  

Proof: (Only if) Suppose that a solution V exists such 
that S* C V C SM n V,. In such case it is possible to 
extend Decomposition 1 by choosing TI = [TII T12] 

with im(T11) = S* and im(T1) = V .  For V to be 
a solution of Problem 1 there must exist a K such 
that A i l l  + BAKC;, = 0, ALl1 + BiKC;, = 0, 
Ail2 + BiKC;, = 0 and AilZ + BhKCI, = 0. So 
matrix K solves the problem also for SM.  The same 
considerations can be repeated if we suppose that a so- 
lution V exists such that SM n V,  C V E SM.  Dual 
considerations can be made if the supposed solution V 
is such that V ,  C V C V*. 0 

If neither V ,  nor SM are a solution for the problem 
the subspace that solves it has to be looked for in a 
"narrower" space, but we can't state if that subspace 
actually exists or not and we have no procedure to de- 
termine it. Anyway in many practical cases it has been 
shown that subspace V,  solves the problem. 

4 Disturbance Decoupling wi th  Stability 

Let us consider now Problem 2. The following holds: 

Theorem 5 .  Let the given system be left-invertible 
with respect to input U and and the pair ( A , B )  be 
stabilizable. Problem 2 is solvable if and only if 

z) V ,  is an ( A ,  C)-conditioned invariant; 

ii) VM is internally stabilizable; 

iii) 3F I ( A + B F ) V  C V ,  ( A +  BF)x,v is stable, 
kerC kerF 

Proof: Let us consider Decomposition 1 with B' having 
the particular structure seen for left-invertible systems. 
Obviously the first condition is still necessary but not 
sufficient anymore. This is due to the fact that we are 
looking for a matrix K so that V ,  is an (A + BKC)- 
invariant and so that matrix (A + BKC) has all eigen- 
values stable. Clearly if the former condition is verified 
then matrix (A + BKC) has a triangular structure so 
that a ( A  + BKC) = a(A1) U a(A2) 

The first set of eigenvalues is stable if and only if re- 
lation (ii) holds while the second one is stable if and 
only 

1. 

2. 

if 

the system is stabilizable so that V M  is externally 
stabilizable as an (A, B)-controlled invariant i.e. 
3F I (A + BF)VM C V M  , (A + B F ) x p ,  is 
stable; 

there exists a matrix K of output feedback which 
results perfectly mappable with one of the state 
feedback matrix satisfying condition 1 just men- 
tioned i.e. given one of the above F ,  exists K 
such that F = KC CTKT = FT e imFT C 
imCT e kerC C kerF, 

i.e. (iia) holds. 0 

Corollary 3. Let the given system be right-invertible 
with respect to output y and the pair ( A , C )  be de- 
tectable. Problem 2 is solvable if and only if 

i) SM is an ( A ,  B)-controlled invariant 

ii) subspace S, is externally stabilizable 

iii) 3G I (A + CG)S E S ,  (A + CG)s is stable, 
imG C imB 

Proof: Dual of proof to Theorem 5. 0 

The same conditions can be stated in terms of invariant 
zeros. The following holds: 

Theorem 6. Let the given system be left-invertible 
with respect to input U and and the pair ( A , B )  be 
stabilizable. Problem 2 is solvable if and only if: 
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i) 

ai) 

iii) 

iv) 

V ,  is an ( A ,  C)-conditioned invariant; 

2 ( u ;  e) - Z ( U ,  d ;  e )  are all stable 

2 ( u ,  d ;  e) n 2 ( d ;  y, e) are all stable 

3F I ( A +  BF)V V , ( A + B F ) x p  is stable, 
kerC C_ kerF 

Proof: We want to show the equivalence of these con- 
ditions with the ones stated in Theorem 5. The first 
and last conditions are the same for both theorems, so 
we just need to show that condition (zi) of Theorem 5 
holds if and only if conditions (ii)-(izi) hold for Theo- 
rem 6. Condition (zz) of Theorem 5 can be divided in 
two parts: 

1. V,  is internally stabilizable, 

2. submatrix Ai3 has stable eigenvalues. 

It has been shown in the past (by Piazzi and Marro [6]) 
that V ,  is internally stabilizable if and only if Z ( U ;  e) - 
2 ( u ,  d ;  e )  are all stable. It is easy to see that submatrix 
Ai3 has stable eigenvalues if and only if 2(u ,  d ;  e) n 
2 ( d ;  y, e )  are all stable since 

2 ( u ,  d ;  e )  = o(AL3) U u(Ak5) 
a d ;  Yl  e) = 4 4 ' 2 2 )  U 4 4 L 3 )  

(33) 
(34) 

and so the equivalence is proved. 0 

Corollary 4. Let the given system be right-invertible 
with respect to input y and and the pair ( A , C )  be 
detectable. Problem 2 is solvable if and only if 

i) SM is an ( A ,  B)-controlled invariant; 

ii) 2 ( d ;  y) - 2 ( d ;  y, e )  are all stable 

iiz) 2 ( u ,  d ;  e )  n 2 ( d ;  y, e) are all stable 

iv) 3G 1 ( A  + CG)S C S ,  ( A  + CG)s is stable, 
imG G imB 

Proof: Dual to proof of Theorem 6. 0 

5 Applications to mechanical systems 

In order to both validate the theoretical results and 
show their potential applications to mechanical sys- 
tems, the problem of controlling vehicles equipped with 
active suspensions is here stated in a geometric frame- 
work as a decoupling problem. 

The control of active suspensions has been widely in- 
vestigated in literature, e.g. [4]. Active suspensions 
are employed in advanced vehicles in order to enhance 
both ride comfort and safety. The actuation of suspen- 
sions along with proper sensor systems allows the vehi- 
cle controller to actively reject external disturbances. 

\ I '  

Figure 1: 2D mechanical model of a vehicle with active 
suspensions. 

This section is aimed to synthesize a decoupling con- 
trol law able to isolate the chassis from disturbances 
due to road irregularity and transmitted through the 
suspensions. This problem is usually referred to as ride 
height regulation. 

5.1 Dynamic model of the vehicle 
The two-dimensional vehicle in fig. 1 consists of a rigid 
chassis and a rigid axis linked by means of two passive 
suspensions and actuators. An independent control ac- 
tion is exerted at each corner of the vehicle ( ~ 1  and ~ 2 ) .  

With the notation of equations (1-3), a five map 
representation ( A ,  B, C, D, E )  of the vehicle dynamics 
around the equilibrium configuration has been derived. 
The 8-dimensional state vector consists of the chassis 
roll 8, and height z ,  of the wheel axis height 21 and 
angle 8,1 and their respective derivatives: 

T T T  
z = ( z r  2,) 

z, = (e, eal 6, eal)T, z, = (. i. t l)T.  
We are interested in regulating, through control inputs 
U = ( u I , u ~ ) ~  and informative outputs y,  the chassis 
posture e = (e,, z ) ~  against disturbances d = ( d l ,  d ~ ) ~ .  

According to [7], the state matrix is 

A = [ Ai1 o4 A z 2 ]  04 
with Ai, = [ O2 I' ] 

Mik Mi0 

to obtain Mlp and Mzp simply substitute k with p; 
the input matrix is 

the disturbance matrix is 

and the controlled output matrix is 
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where Mb ( I r )  is the mass (moment of inertia) of the 
chassis (about the roll axis); Mal ( l a l )  is the mass 
(inertia) of the axis with length 21; k (p) is the spring 
(damping) coefficient of suspension and finally kt and 
Pt are the visco-elastic parameters of the tires. 

Assuming that the suspension heights and their time 
derivatives are accessible for measurements, the infor- 
mative output vector is 

T -T * Y = [Yh,Yh] = cx (35)  

According to this formulation the problem of ride 
height regulation reduces to Problem 1 of Section 2. 

5.2 Disturbance decoupling example 
A realistic example of a road vehicle with active sus- 
pensions is here reported. The used parameters of the 
vehicle geometry and dynamics are 1 = 0.9m; Mb = 
1500kg; I,. = 360kgm2; Mal = 40kg; Ial = 10.8Kgm2; 
K = 18E4N/m; /3 = 1E3Ns/m; Kt = 1.96E5N/m; 
Ot = 1.92E3Ns/m. 

Being maxV(A, B, C) n B = 0, it results that, the me- 
chanical system is left-invertible with respect to the 
informative outputs y and that the necessary and suf- 
ficient condition of Theorem 4 holds for 

0 1 0 0 0 0 0 0  
0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 1  
Vrn = irn [ 0 0 0 1 0  0 0 .] 

The informative output feedback gain 

1 19 10.11 0.0056 
1 19 0.0056 0.11 [ K = io4 

localizes disturbances d in the null space of the regu- 
lated output e = ( O r ,  z) .  Geometrically, feedback gain 
K ,  makes the resolvent V, ( A  + BKC)-invariant. As 
regards the decoupling problem with stability, stated 
in Problem 2, it can be easily shown that necessary 
conditions i) and ii) of Theorem 5 hold. Observe that 
in order to enjoy sufficiency of Theorem 5 condition 
iii), which strongly depends upon the specific control 
problem, should be met as well. 

Note that results on disturbance localization for active 
suspensions are not just limited to the particular two- 
dimensional example here reported. In [7] it has been 
proved that the unaccessible disturbance localization 
for the regulated output e can be viewed as a struc- 
tural property of all the vehicles equipped with active 
suspensions. 

6 Conclusions 

A solution for the problem of disturbance decoupling 
using algebraic output feedback has been considered. 

The necessary and sufficient conditions for the struc- 
tural problem (without stability) are easily checkable 
and constructive. For the problem with stability re- 
quirement the conditions are not constructive anymore: 
the solution has to be searched among the output-to- 
input matrices solving the structural problem. The 
structural part of the problem may have no solution, or 
only one solution, in which case we have no freedom on 
choosing matrix K so that the final system is stable, or 
more solutions, giving us a chance to look for a matrix 
K solving the problem with stability. 

In practical applications, the solution of the distur- 
bance decoupling problem through algebraic output 
feedback strongly simplifies the structure of the con- 
trol systems and enhances the whole system robustness. 
This has been put into evidence by the potential appli- 
cation of paper results to some mechanical systems. In 
particular, the problem of controlling vehicles equipped 
with active suspensions has been formalized as a decou- 
pling problem and solved in a geometric framework. 
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