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Abstract—The human hand represents a complex fascinating
system with highly sensitive sensory capabilities and dexterous
grasping and manipulation functionalities. As a consequence,
estimating the hand pose and at the same time having the capa-
bility to provide haptic feedback in a wearable way may bene�t
areas such as rehabilitation, human-robot interaction, gaming,
and many more. Existing solutions allow to accurately measure
the hand con�guration and provide effective force feedbackto the
user. However, they have limited wearability/portability. In this
paper, we present the wearable sensing/actuation system GESTO
(Glove for Enhanced Sensing and TOuching). It is based on
inertial and magnetic sensors for hand tracking, coupled with
cutaneous devices for the force feedback rendering. Unlikevision-
based tracking systems, the sensing glove does not suffer from
occlusion problems and lighting conditions. We properly designed
the cutaneous devices in order to reduce possible interferences
with the magnetic sensors and we performed an experimental
validation on ten healthy subjects. In order to measure the
estimation accuracy of GESTO, we used a high precision optical
tracker. A comparison between using the glove with and without
the haptic devices shows that the presence of them does not
induce a statistically signi�cant increase in the estimation error.
Experimental results revealed the effectiveness of the proposed
approach. The accuracy of our system, 3.32 degrees mean
estimation error in the worst case, is comparable with the human
ability of discriminating �nger joint angle.

Index Terms—Hand tracking, Haptic interfaces, Inertial and
magnetic sensors, Cutaneous feedback, Wearable technology,
Inertial measurement unit (IMU).

I. I NTRODUCTION

Capturing, analyzing, and interacting with the human body,
and in particular with the human hands, is fundamental in
several applications such as rehabilitation [1], human-robot
interaction [2], and gaming [3]. In these contexts, wearability
represents a key point since it improves the way humans
interact with each others and the surrounding environment [4].
Wearable devices have the advantages of being portable and
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Fig. 1: GESTO (Glove for Enhanced Sensing and TOuching)
in a gaming scenario. It is made by11 MARG boards (blue)
for sensing, and5 wearable haptic devices (red) for force
feedback. It allows to estimate the joints values and rotation
of the human hand with respect to a global reference frame.
Also, it can provide cutaneous haptic feedback to the user
while interacting with virtual/remote environments. A modular
solution is adopted in order to easily connect a different
number of cutaneous devices as well as allowing to separately
use the sensing and the actuation components.

well integrated into people habits, with the aim of providing
valuable information to the users. The idea is that technology
will increasingly become more a consistent part of our daily
life as it will be part of our clothing and sometimes even
part of our bodies [5]. In the last years, there has been an
increasing interest in developing new solutions to accurately
track the human body and provide the users with realistic
haptic feedback. However, most of the existing solutions are
not completely wearable or portable. They usually rely on
grounded devices and/or structured environments.

Concerning the human body tracking, several techniques
were developed such as optical trackers, exoskeletons, camera-
based tracking algorithms, and fabric-integrated sensors. Ac-
curate optical tracking systems such as Vicon (Vicon Motion
Systems, UK) and Optitrack (NaturalPoint Inc., USA) exploit
active or passive optical markers to estimate the human body
con�guration with high precision and accuracy. The main



drawback of these approaches is the fact that these frameworks
need a structured environment. Exoskeletons allow to accu-
rately estimate the human pose thanks to their rigid structure
and high quality sensors [6], [7]. Disadvantages result in cost
and weight.

Although the aforementioned solutions provide very precise
motion estimation, they are neither wearable/portable, nor us-
able in unstructured or outdoor scenarios. Towards the concept
of portability, camera-based tracking algorithms became a
widespread solution due to improvements in computer vision
techniques and progressive growth in computers computational
capabilities. In [8] and [9] the authors developed a hand tracker
which employed a commercial RGB-D camera to extract the
position, orientation, and con�guration of the human hand.
Commercial devices, like the Leap Motion (Leap Motion Inc.,
USA), allow to simultaneously estimate the full hand con�gu-
rations of both hands. However, camera-based solutions have
some limitations: RGB-D cameras might not work properly in
an outdoor environment due to the infrared interference, and
occlusions of the �ngers may cause a poor estimation of the
hand pose.

A viable solution consists in using fabric-integrated devices,
e.g., datagloves based on piezoresistive, �beroptic, magnetic,
and Hall-effect sensors [10]. In [11] the authors developed
a piezoresistive glove to measure the �ngers �exion. An im-
proved version, which included also abduction measurements,
was presented in [12]. A wireless low-cost glove based on
�exible resistive sensors was presented by Borghettiet al. [13].
This system was characterized by a low power consumption
with a weekly battery lifetime. Recently, Bianchiet al. [14]
built a prototype of a glove equipped with goniometers, which
was capable of reconstructing the whole hand posture (with
the exception of the palm's orientation) in grasping tasks.
Despite the results, goniometer technology presents some
limitations related to the high number of electrical connections
per joint, which may reduce the wearability of the system.
Different from camera-based trackers, data gloves requirethe
users to wear additional equipment (such as gloves), which
may prevent the users to have a natural interaction with the
environment.

Another way to estimate the pose of the human body is to
use Micro Electro-Mechanical Systems (MEMS) technology.
In particular, a MARG (Magnetic, Angular Rate, and Gravity)
board consists of a MEMS triaxial gyroscope, accelerometer,
and magnetometer. The sensors board can be integrated with a
wearable device and used to reconstruct the pose of the human
body. The main drawback of MARG sensors is that the major-
ity of the algorithms used to estimate their orientation rely on
the magnetometer, thus they are sensitive to variations in the
magnetic �eld. In spite of that, tracking systems based on this
technology are commercially available and allow to accurately
track the whole body, except the hands, both in outdoor and
indoor environments, under different lighting conditionsand
free from grounded hardware [15]–[18]. Focusing on hands,
a MARG tracking glove using 2-axis accelerometers was
developed in [19]. The authors, by means of six sensors placed
on the �ngers, made a whole-hand input device exploiting the
26 postures of the american sign language alphabet. A similar

device, using triaxial accelerometers, was developed by Kim
et al. [20]. This device was used as a wearable mouse by
allowing three �ngers to operate as the left, middle, and right
buttons. A sensing glove composed of inertial and magnetic
sensors was proposed in [21]. For each �nger, the authors
used two pairs of triaxial gyroscope/accelerometer placedon
the proximal and intermediate phalanges, and a triaxial mag-
netometer placed on the �ngertip. The sensors were connected
to multiple micro-controllers in order to achieve an accurate
estimation. The proposed data glove used one sensors board
for each phalanx, three MEMS sensors boards for the palm,
and additional hardware to collect and process the data.

By considering all the aforementioned tracking methodolo-
gies, we focus on MEMS technology to estimate the hand
pose. This choice �ts the requirements of designing a wearable
low cost sensing system capable of working in unstructured
environments with varying lighting conditions. Moreover,
since the goal is to provide also haptic feedback exploiting
cutaneous devices, a glove instrumented with MARG sensors
represents a good solution in terms of hardware integration,
user customization, and tracking capability.

Concerning the haptic feedback, recently many haptic de-
vices were designed to be portable and wearable by using
vibrations and motor-driven platforms. Vibrotactile stimuli are
usually generated by DC motors with eccentric masses, which
can be easily integrated in devices like suits, bracelets, shoes,
gloves, etc [22]–[24]. Although vibrotactile stimuli havebeen
successfully used to guide the human motion [25]–[27], they
can only provide multi-frequency patterns, with a limited force
feedback rendering capability.

Motor-driven platforms devices use DC motors [28] or
servomotors [29] to tilt a mobile platform and render 3-D
forces on the �nger pads. The idea behind these devices orig-
inates from the observation that stimuli received by the user,
while interacting with an object, consist also of a cutaneous
sensation perceived by mechanoreceptors in the skin. Previous
researches demonstrated the potential of these interfacesin
recognizing the local properties of objects, such as shape and
edges [28]. Due to their reduced size, these devices can be
integrated with an RGB-D tracker or with a Leap Motion
controller in order to provide haptic feedback in virtual reality
interaction [30], [31].

In this work, we use wearable cutaneous devices which pro-
vide force feedback via motor-driven platforms. Even if vibro-
tactile motors represent a more wearable solution, cable-spring
driven devices can generate a more realistic feeling of touch.
To make the haptic interfaces more wearable, comfortable,
and compatible with the proposed tracking glove, we design
a custom version of the devices presented in [29] and [31].

Our contribution consists in presenting GESTO (Glove for
Enhanced Sensing and TOuching) based on MARG sensors
for hand tracking and cutaneous devices for force feedback
(Fig. 1). The sensing glove can estimate the joints values ofthe
hand as well as its rotation with respect to a global reference
frame. To the best of our knowledge, this represents one of the
�rst attempts to combine a sensing glove based on inertial and
magnetic sensors with haptic tactile devices. A possible disad-
vantage of combining magnetometer and motor-driven devices



Pinky

Thumb

Index

Middle

Ring

DIP

PIP

MCP

IP

MCP

TMCarpus

Fig. 2: A simpli�ed kinematic structure of the human hand
having 23 Degrees of Freedom (DoFs): 4 DoFs for each �nger
(two for the �rst joint and one for each of the remaining joints)
and 3 DoFs for the hand rotation.

consists in having permanent magnet inside the devices that
might affect the performance of the magnetic sensors. To
overcome this limitation, we design the glove in order to take
advantage of the biomechanical constraints of the human hand
[32], [33]. To the best of our knowledge, our results represent
the �rst experimental demonstration of the use of MARG
sensors coupled with cutaneous devices that simultaneously,
(1) estimate the orientation and con�guration of the hand and
(2) provide haptic feedback to the user. Different from existing
solutions, the proposed system is wearable, portable and it
can be used in indoor/outdoor unstructured environments. This
work is based on previous conference material [34] compared
to which we provide herein a new and improved prototype
of the sensing glove, a new haptic device, a more extended
theory, and a more comprehensive experimental validation.

The rest of the paper is organized as follows. Sect. II
presents the kinematic model of the hand used in this work.
Sect. III describes the proposed sensing glove and the tracking
algorithm used to estimate the hand pose. Sect. IV shows the
cutaneous haptic devices used for the force rendering. Sect. V
reports the results of the experimental validations, whereas
in Sect. VI conclusions and possible subjects of future research
are outlined.

II. H AND MODELING

In what follows, we present the simpli�ed kinematic model
of the hand, which will be instrumental in the design of the
sensing glove. A complete human hand model has about 30
degrees of freedom (DoFs) [35]. For the sake of simplicity and
without loss of generality, we use a simpli�ed kinematic hand
structure. We model each �nger as a planar kinematic chain,
with one universal joints (two intersecting, orthogonal revolute
joints) and two one-dimensional hinges. In accordance with
[36], we assume that each �nger has the metacarpal (MC) bone
�xed with respect to the hand frame, and characterized by four
DoFs. In a more complete model of the human hand, the thumb
has at least �ve DoFs: two in the trapeziometacarpal (TM)

TABLE I: Static constraints of the �ngers.

Digit Joint
Flexion Extension

Abduction

Adduction

(deg.) (deg.) (deg.)

TM 90 15 60

Thumb MCP 80 0 0

IP 80 10 0

MCP 90 40 60

Index PIP 110 0 0

DIP 90 5 0

MCP 90 40 45

Middle PIP 110 0 0

DIP 90 5 0

MCP 90 40 45

Ring PIP 120 0 0

DIP 90 5 0

MCP 90 40 50

Pinky PIP 135 0 0

DIP 90 5 0

joint, two in the metacarpophalangeal (MCP) joint and one
in the interphalangeal (IP). However, the abduction/adduction
motion range of the MCP joint usually can be neglected and
the thumb can be modeled with four DoFs. Index, middle, ring,
and pinky �ngers have two DoFs in the MCP joint (one for
adduction/abduction and another for �exion/extension), one
in the proximal interphalangeal (PIP) and one in the distal
interphalangeal (DIP). Fig. 2 shows the model of the hand used
in this work. Each �nger is modeled using four parameters,
two for the rotation of the �rst joint and two for the remaining
joint angles. The orientation of the palm is represented using
quaternions. The hand model has 23-DoFs identi�ed by 24
parameters, i.e., 20 values for the joints of the �ngers and a
quaternion for the palm orientation.

Even if the human hand is extremely articulated, movements
of the �ngers are constrained to a speci�c range due to
dynamic and static constraints. Static constraints refer to the
limit of the range of �nger motions as a result of the hand
anatomy. Dynamic constraints are referred to the limits on the
joints during motions. This typology can be divided in two
groups, inter-�nger and intra-�nger constraints. Inter-�nger
constraints refer to the ones imposed on the joints values
between different �ngers. Intra-�nger constraints relatethe
joints of the same �nger. These constraints were studied by
Coboset al. in [32].

Recently, the authors enhanced the previous results with
the following relationship for the index, middle, ring, and
pinky [33],

� DIP ' 0:88 � P IP (1)



Fig. 3: Coordinate frames and quaternion that express the
orientation used for the MARG tracking system. In green is
reported the orientation of the intermediate phalanx referred to
the proximal phalanxP qI , and the orientation of the proximal
phalanx with respect to the palm0qP . phalanxW qI , proximal
phalanx W qP , and palm W q0 with respect to the world
frame� W .

and
� IP ' 0:77 � MCP (2)

for the thumb. The authors found also that neither the hand
position, nor the used hand (left/right) had an in�uence on
the linear relationship between the two distal �nger joint
angles. Static constraints on the values of each joint are based
on anatomical studies [32], [37]. Table I reports the static
constraints used in this work. Note that intra-�nger constraints
are used to design the glove in order to minimize the number of
MARG sensors while allowing its integration with cutaneous
haptic devices. Static constraints are used by the tracking
algorithm in order to provide a correct estimation of the
human hand.

III. D ESIGN OF THE SENSING GLOVE AND HAND

TRACKING ALGORITHM

The cutaneous devices considered in this work are assumed
to be rigidly attached to the distal phalanges of the �ngers
as the ones developed in [28]. Thus, we design a sensing
glove made by11 MARG sensors (1 sensor for the palm and
2 sensors for each �nger) and we exploit the biomechanical
constraints reported in Sect. II. For all the �ngers, we place
the sensors on the intermediate and proximal phalanges and
we model the relation between the upper �nger joints, as
described in Eqs. (1)-(2). Each MARG board1 contains a
triaxial accelerometer/gyroscope (InvenSense MPU6050) and
a triaxial magnetometer (Honeywell HMC5883L). Ten sensors
boards are placed on the dorsal surface of the �ngers and

1Board refers to electronic board that contains the sensors and other
necessary electronic components.

one on the back of the palm (Fig. 3). The last phalanx of
each �nger is left uncovered to not affect the user's tactile
perception. The sensing glove uses an Arduino Nano with
an ATmega328 microcontroller. Arduino collects the raw data
from the MARG boards, and sends them through an 115200
bps serial connection to an external computer in charge of all
the mathematical computations. The update rate of the system
is 50 Hz. In particular, the accelerometer sample rate is 1
kHz, the gyroscope can provide an 8 kHz output data rate,
whereas the magnetometer can achieve a maximum rate of
160 Hz in single measurement mode and 75 Hz in continuous
measurement mode. The glove is designed by considering the
50th percentile of European men and women, age 20-50. This
is a very common approach in objects design and ergonomics.
The housing of the sensors is designed in order to �t the �nger
and narrow the possible movements of the electronic board
as the hand/�ngers move. In what follows, we describe the
procedure to calibrate the sensing glove and the hand tracking
algorithm based on MARG sensors.

A. Calibration of the sensing glove

Each MARG sensor requires an initial calibration (see the
Appendix for further details). The tracking algorithm requires
an initial setup, which consists of three steps. In the �rst step,
the user is asked to displace the hand in a knowna-priori
position, e.g., the user places the hand in a �at surface. In this
phase, each MARG sensor collects 200 samples to estimate
the gyroscope bias. In the second step, for each hand joint we
compute the offset quaternion combining the joint estimations
and the known posture. In the last step, similarly to [15], we
use thea-priori knowledge of the hand kinematic chain to
estimate the length of the links. The user is asked to touch
in turn the �ngertip of the thumb with the �ngertip of the
other �ngers (index, middle, ring and pinky) and moving them
without applying forces to the �nger pads, to not violate the
constraint in Eq. (1). Since the distance between the �ngertip is
zero, we can take advantage of the kinematic chain to improve
the estimation of the length of the bones. Starting from an
initial value (taken from anthropometric measurements), we
perform an optimization algorithm to re�ne the estimation.
The a-priori lengths of the �ngers are used as a starting
point to initialize the optimization problem that minimizes
the distance between the two �ngertips. We validate this
procedure with synthetic data. This is a common approach
in the relevant literature when accurate measurements are
hard to obtain [8]. We performed 30 trials. For each trial we
generate hand con�gurations with pseudo-random lengths of
the phalanges and joints values (an admissible range of values
is considered). Joints values are corrupted with zero mean
Gaussian noise with a standard deviation of 3 deg, simulating
the estimation error of the MARG sensors (Sect. V). The
optimization procedure estimates the length of the phalanges
with an error less then 5% of the real bone length.

B. Hand tracking algorithm

In what follows, we report the joint estimation for a generic
�nger, since the same approach applies to all �ngers. Let
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Fig. 4: The wearable cutaneous device is composed of two platforms (a): one placed on the nail side of the �nger and one in
contact with the �nger pad. One small servomotor controls the length of three cables in order to display the desired forceto
the user. The rendered 3-D model of the device from three different points of view is reported in (b).

W q0(t), W qP (t), W qI (t) be the quaternions that express
the orientation, with respect to the global reference frame
� W , of the frames associated to the palm, to the proximal
phalanx, and to the intermediate phalanx (Fig. 3). Let0q̂P

be the offset quaternions between the proximal phalanx and
the palm, andP q̂I the offset quaternion between the inter-
mediate phalanx and the proximal one, both estimated during
the aforementioned calibration phase. The orientation of the
proximal phalanx referred to the palm can be computed as

0qP (t) = 0qW (t) 
 W qP (t);

where0qW (t) is the conjugate quaternion ofW q0(t). Then,
the quaternion which describes the rotation of the proximal
phalanx with respect to the initial con�guration results

qP (t) = P q̂0 
 0qP (t): (3)

The quaternionqP (t) is converted to the Euler angles rep-
resentation and used to compute the �exion/extension and
abduction/adduction values of the MCP joint. In the same way,
the orientation of the intermediate phalanx with respect tothe
proximal phalanx is estimated

P qI (t) = P qW (t) 
 W qI (t)

and consequently,

qI (t) = I q̂P 
 P qW (t) 
 W qI (t): (4)

Then, the Euler angles conversion is used to compute
the value of the PIP joint. Finally, the value of the DIP
joint is obtained from the estimated values of the PIP joint,
exploiting (1). For the orientation estimation of each MARG
sensor with respect to the global world frame� W , we use
the algorithm proposed in [38] since it achieves the lowest
estimation error (see Sect. V) and it has only one parameter
to be set (see the Appendix).

IV. D ESIGN OF THE WEARABLE HAPTIC DEVICES

Contextually with the tracking glove, we present the cu-
taneous devices for cutaneous feedback. Cutaneous devices
received an increasing interest in the last years, due to the

possibility to provide haptic feedback in a wearable way,
and thus contribute in bringing haptic technologies to ev-
eryday life applications. Minamizawaet al. [39] found that
the deformation of the �nger pads due to the interaction
with an object can generate a reliable sensation even when
perceptions on the wrist and arm are absent. This implies
that a simple device for reproducing the virtual object can be
realized by recreating the �nger pad deformation. Based on
these observations Pacchierottiet al. [4] presented a 3-DoFs
wearable cutaneous haptic device able to provide cutaneous
stimuli at the �nger pad. The device was made of a body that
contained three servomotors (placed on the �ngernail) and a
mobile platform that applied the required forces. To have a
more compact, wearable, and suitable solution for the tracking
systems, Scheggiet al. [31] developed a smaller 1-Dof device
for the force feedback rendering. The device was composed
of two platforms: one placed on the nail side of the �nger
and one in contact with the �nger pad. Three cables and three
springs connected the two parts, while one small servomotor
controlled the length of the cables. The idea was to move the
platform towards or away from the �nger pad, to display a
force at the user's �ngertip.

In this study, we improve the design presented in [31]. We
change shape and weight (reduced to 12.6 g) of the cutaneous
device to optimize its use with the sensing glove. The size
of the device is minimized and the motor (Hitec HS5035-HD
Digital Ultra Nano) is moved from the back of the device to
the front, positioning it horizontally in order to remove the
magnetic disturbance affecting the MARG sensors (Fig. 4).

A. Haptic feedback

At the equilibrium static condition, the force induced by the
�nger pad is balanced with the forces generated by the three
cables. For each cable the resultant force can be expressed
as the sum of two components. The �rst one is the force
generated by the servomotor, and its module depends on the
motor torque. The second one is the resistance given by the
three springs, and the module depends on the springs stiffness.



This force is expressed with respect to the center of the
platform and results

Ff =
� �

r
� 3ks jd � d0j

�
;

where� is the motor torque (max0:078Nm for the servomotor
used),r = 0 :0055 m is the pulley radius,ks = 300 N/m
is the springs stiffness,d is the current cable length, andd0

is the nominal spring length (d0 = 0 :015 m). Therefore, to
generate the desired force we start from an initial position
in which: (i )the �ngertip is not stimulated by the device,
and (ii ) the platform is in contact without producing skin
deformation. This position is reached using a preliminary
manual calibration. The use of a force sensor on the platform
would make this procedure automatic, but it would also add
extra wires, thus increasing the complexity of the device to
wear. Since the �nger pad is compliant, the displacement of the
platform produces a deformation of the �nger pulp that leadsto
a contact stress distribution. Thus, a relationship between the
position of the platform and the exerted force can be evaluated.

In order to describe this ralationshop, let us recall some
of the mathematical and numerical models for the human
�ngertip which have been proposed in the literature. In [40]
a study on structural model of the �ngertip was presented.
The paper took into account both the material in-homogeneity
and geometry. The authors studied whether the proposed
�ngertip model could predict the force-displacement and the
area responses of relative force during interaction with a �at,
rigid surface, like our platform. Moreover, they evaluatedif
the stresses and strains predicted by this model were consistent
with the tactile sensation. In [41] the authors presented a 2-D
continuum �ngertip model. The �nger was approximated by an
homogeneous, isotropic and in-compressible elastic material.
The undeformed �ngertip was modeled as an axial symmetric
ellipsoidal elastic membrane, �lled with a in-compressible
�uid with an internal pressure. The authors considered a 2-D
model and an external load was applied to the �nger through
a �at surface. The model predicted a pulp force/displacement
relationship which could be represented as a non linear hard-
ening spring, i.e., whose stiffness increased with the applied
load. In [42], Wuet al. described a 2-D �nite element model
of the �ngertip. The skin was modeled as an hyper-elastic
and viscoelastic membrane, and the subcutaneous layer was
considered as a biphase material. Thus, �ngertip deformation
and applied force could be related by an impedance model,
which was non-linear and depends on the �ngertip speci�c
characteristics (e.g., the subject age). Because of the simplicity
of the 1-DoF devices used in this paper, we consider a
simpli�ed model of the �ngertip, i.e., a linear relationship
between resultant normal force and platform displacement.
The isotropic elastic behavior of the �nger pad with stiffness
K f = 0 :5 N/m considered here is in accordance with the
work of Parket al. [43]. In other terms, we assume that the
platform displacement is proportional to the desired forceFp

to be applied to �nger pad by the mobile platform,

� p = K � 1
f Fp;

where � p is the displacement of the platform with respect
to its initial position, i.e., when the platform is in contact

Fig. 5: GESTO (Glove for Enhanced Sensing and TOuching) is
composed of11 MARG sensors (blue): 1 sensor for the palm
and 2 sensors for each of the remaining �ngers.5 wearable
haptic devices (red) provide force feedback to the user.

TABLE II: Mean and standard deviation of the attitude esti-
mation error for the four considered algorithms.

Algorithm Roll (deg.) Pitch (deg.) Yaw (deg.)

GN 2.70 � 1.83 1.42 � 1.13 2.47 � 1.68

NCF 2.68 � 1.76 1.43 � 1.13 2.58 � 1.72

GDC 2.71 � 1.94 1.58 � 1.23 2.63 � 3.24

GNK 2.84 � 2.46 2.08 � 2.03 3.24 � 3.25

with the �nger pad without producing any skin deformation.
Because of the design of the device, and the possible maximum
displacement of the platform, the maximum force that can be
provided to the human's �nger pad is about5:2 N. A similar
open-loop control of wearable cutaneous devices was used in
[4] and [28] for 3-DoF cases.

V. EXPERIMENTAL VALIDATION

In this section we report the experimental validation of the
proposed system (Fig. 5). The total weight of the glove is
160.5g, including the Lycra-glove (72 g), 5 devices (12.6g
each), and cables (25.5 g). A preliminary experiment was
conducted to test the performance of four attitude estimation
algorithms. Additional experiments were performed to prove
the robustness, dynamic performance, precision, and compat-
ibility of the proposed sensing glove with the wearable haptic
devices2.

A. Experimental comparison of the attitude estimation algo-
rithms

We tested and implemented four different algorithms for the
orientation estimation of MARG sensors:

2Please notice that this paper is accompanied by multimedia material. A
video is available also at: http://goo.gl/3AChOR.
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Fig. 6: Comparison among the four different estimation algorithms. The MARG sensor was freely moved and rotated. An
accurate optical tracking system was used to compute the ground truth measurements. For each algorithm we report the mean
and standard deviation of the error in orientation estimation expressed as roll, pitch and yaw angle.

i Gauss-Newton method (GN) combined with a complemen-
tary �lter [38];

ii Nonlinear Complementary Filter (NCF) suggested by Ma-
honey [44];

iii Gradient descent algorithm coupled with a complementary
�lter (GDC), proposed by Madgwick [45];

iv Gauss-Newton method with Extended Kalman Filter
(GNK) in a quaternion version [46].

In order to compare the algorithms, we used an accurate
optical tracking system, whose output was considered as
ground truth reference. A Vicon tracking system consisting
of 8 cameras was used to provide reference measurements
of the MARG sensor orientation. The sensor was placed on
a �at platform together with six passive optical markers. An
initial calibration procedure was performed in order to align
the reference frame of the sensor with the one of the Vicon.

We freely moved and rotated the platform,10 trials were
performed. Each trial was 90 seconds.

A comparative error analysis among the four algorithms is
reported in Table II and Fig. 6. In Fig. 7 we report the ground
truth values of a typical trial. The estimated quaternions are
transformed in Euler angles only for the sake of clarity. In
the proposed system, we used the algorithm presented in [38]
since it achieved the lowest estimation error, and it had only
one parameter to be set.

B. Experimental validation of the sensing glove

In this section, we report the results concerning the vali-
dation of the hand posture estimated by the proposed sensing
glove. We �rstly validate the glove without the wearable haptic
devices, then we discuss the results of the test conducted
wearing the devices. Finally, we compare these results using
the statistical analysis in order to demonstrate the robustness
of the proposed system. Ten healthy subjects were involved in
the �rst experiment (age range 24-47, 8 males and 2 females,
all right-handed). None of the participants reported any de�-
ciencies in the perception abilities (including vision, hearing,
touch and proprioception). The participants signed informed
consent forms. All of them were informed about the purpose
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Fig. 7: Experiment 1.The MARG sensor was positioned onto
a �at platform together with six passive optical markers. We
kept the platform steady for 30 seconds, then we freely moved
and rotated it for 30 seconds, and �nally we kept it steady for
further 30 seconds. A representative trial is depicted; only the
orientation estimated by the optical tracker is reported.

of the experiment, were able to discontinue participation at
any time and no payment was provided for the participation.
Each user was asked to wear the glove and freely move his/her
right hand for 90 seconds without any training session. Two
trials for each subject were performed.

We recorded the users' hand con�guration both using our
sensing glove and the Vicon tracking system. On each MARG
we placed four passive markers and processed at the same
time the orientation computed by the optical tracking system
and by the inertial and magnetic sensors. For each subject we
computed the values of the �ngers' joints both with the MARG
boards and the optical tracker (cf. Sect. III). A representative
joint angle values estimation is shown in Fig. 8.

Table III summarizes the �rst experimental results. The table
reports the average error and the 95% Con�dence Interval for
all the considered joints of the hand among the different trials
of the users: the mean of the estimation error is less than 3.30



degrees for all the considered joints, thus the accuracy of the
system is close to the human ability in discrimination of �nger
joint-angle [47].

Then, to evaluate the compatibility of the proposed glove
with the wearable haptic devices we performed the same
experimental procedure wearing the haptic interfaces. Ten
healthy subjects (age range 24-47, all males and right-handed)
were involved in this test. None of the participants reported
any de�ciencies in the perception abilities (including vision,
hearing, touch, and proprioception). The participants signed
informed consent forms. All of them were informed about
the purpose of the experiment, were able to discontinue
participation at any time, and no payment was provided for
the participation. Each user was asked to wear the full system
(glove and �ve haptic devices) and move his/her right hand
for 90 seconds. Two trials without any training session were
performed for each user. No speci�c task or gesture was
suggested. The motors received a sinusoidal input signal to
continuously move up and down the platform and generate a
variable magnetic �eld and soft iron disturbance.

Table IV reports the average error and the 95% Con�dence
Interval for the PIP joint values for each �nger, and MCP for
the thumb. It reports also the estimated values for the MCP
joint for index, middle, ring, pinky, and (TM for the thumb).
This experiment reveals that the interference effect generated
by the motors is negligible for the joint values estimation.

To prove and validate these results we perform a statistical

TABLE III: Mean and 95% Con�dence Interval of the joint
estimation error without haptic devices. The data are computed
among ten users; each user performed two trials.

Digit Joint Error (deg.)

Con�dence

Interval 95%

(deg.)

TM (F/E) 3.20 [3.08 3.32]

Thumb TM (A/A) 2.87 [2.76 2.98]

MCP 3.72 [3.57 3.86]

MCP (F/E) 3.62 [3.49 3.75]

Index MCP (A/A) 3.27 [3.16 3.38]

PIP 3.16 [2.98 3.34]

MCP (F/E) 2.73 [2.60 2.86]

Middle MCP (A/A) 2.68 [2.57 2.77]

PIP 2.66 [2.56 2.76]

MCP (F/E) 2.98 [2.85 3.11]

Ring MCP (A/A) 3.20 [3.09 3.32]

PIP 3.04 [2.89 3.19]

MCP (F/E) 2.72 [2.60 2.83]

Pinky MCP (A/A) 2.97 [2.86 3.08]

PIP 3.16 [3.02 3.30]
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Fig. 8: Joint orientation estimation for the index �nger, repre-
sentative user.

analysis on the data, analyzing the error in the orientation
estimation (dependent variable) under the two different condi-
tions, the glove coupled or not with the devices. We exploit the
paired sample t-test to determine whether the mean difference
between paired observations is statistically signi�cant.We
process the data recorded in the two experimental sessions.

Firstly, we validate the hypothesis that the presence of the
devices is negligible for the estimation of the MCP joints
orientation. We take into account the worst case, i.e., the
pinky. Indeed, since it has the shortest link compared to the
other �ngers, the distance between the MARG sensor and
the device is the smallest one. Collected data passed the
Shapiro-Wilk normality test (p = 0 :662) and a comparison
of the means among the error is carried out. The presence of
the haptic interfaces does not elicit a statistically signi�cant



TABLE IV: Mean and 95% Con�dence Interval of the joint
estimation error when the wearable haptic devices are used.
The data are computed among ten users; each user performed
two trials.

Digit Joint Error (deg.)

Con�dence

Interval 95%

(deg.)

TM (F/E) 4.68 [4.43 4.91]

Thumb TM (A/A) 4.64 [4.45 4.83]

MCP 3.11 [2.98 3.24]

MCP (F/E) 3.21 [3.07 3.36]

Index MCP (A/A) 2.89 [2.76 3.02]

PIP 3.26 [3.10 3.42]

MCP (F/E) 2.28 [2.14 2.41]

Middle MCP (A/A) 2.84 [2.69 2.98]

PIP 2.15 [2.02 2.28]

MCP (F/E) 3.23 [3.10 3.36]

Ring MCP (A/A) 2.41 [2.31 2.50]

PIP 4.73 [4.58 4.88]

MCP (F/E) 3.47 [3.32 3.62]

Pinky MCP (A/A) 2.50 [2.64 2.37]

PIP 4.93 [4.74 5.10]

increase in error compared to the estimation without them
(t(19) = 0 :876; p = 0 :410).

Once the relationship between the haptic devices and the
sensors placed on the proximal phalanx is investigated, we
focus our attention on the sensors boards placed close to the
motors. Three statistical analyses for this scope are performed.
In the former, we analyze the error among all the PIP joints,
in the second we carry out the test only for the PIP joint
of the pinky, whereas in the latter we focus our attention
on the intermediate phalanx of the ring. The �rst analysis is
used to determine whether there is a statistically signi�cant
mean difference between using the glove with and without
the haptic devices. The assumption of normality was not
violated, as assessed by Shapiro-Wilk's test (p = 0 :714).
The test reveal that wearing the haptics interfaces does not
induce a statistically signi�cant increase in estimation error
(t(99) = 1 :452; p = 0 :154). In the second and third analysis,
we investigate whether the presence of the device worn on
the pinky produces a statistically signi�cant mean increase in
error estimation for the boards placed on the second phalanx
of the ring and of the pinky. Because of the shortest bones
of the pinky, these sensors are the closest to the device,
compared to all the other possible motor-sensor distances.
Results of a paired sample t-test reveal that the mean difference
was statistically signi�cant only for the pinky PIP estimation
(t(19) = 2 :642; p = 0 :033), whereas we can reject this

hypothesis for the ring (t(19) = 2 :022; p = 0 :083).

VI. CONCLUSIONS AND FUTURE WORK

Estimating the human hand pose and, at the same time,
having the capability to provide haptic feedback in a wearable
way is a challenging task. In this paper, we present a possible
solution which relies on MARG sensors for the pose estima-
tion, and cutaneous haptic devices for the force feedback. The
proposed device GESTO (Glove for Enhanced Sensing and
TOuching) can estimate the joints values of the hand as well as
the hand rotation with respect to a global reference frame. It is
designed to limit possible disturbances that may arise between
the magnetometers of the MARG sensors and the servomotors
of the haptic interfaces. A modular solution is considered to
connect an arbitrary number of cutaneous devices as well
as allowing to separately use the sensing and the actuation
components. The experimental validation conducted on ten
healthy subjects revealed that the 95% con�dence interval
for the orientation estimation error is 3.06� 0.12 degrees
among all the hand joints without the devices and 3.32� 0.15
degrees with the devices. These experiments demonstrate the
possibility to sense and provide force feedback to the human
hand in a wearable and portable way.

As part of future work, we will improve GESTO by using
customized and �exible sensing boards of smaller size to
better �t also smaller-sized hands. Additional studies will
be performed in order to integrate the sensing glove with
motor-driven platforms capable of applying 3-D forces on
the �nger pads. Furthermore, additional algorithms will be
investigated and designed in order to reduce the estimation
error of the system. Finally, we are working to make the
system completely wireless. In order to save the battery life
of the device, we plan to perform all the computations on an
external computer and use a low performance micro-controller
on the glove.

APPENDIX: ORIENTATION ESTIMATION OF MARG
SENSORS

In this section, we brie�y detail the orientation estimation
algorithm used in this work. We exploit the quaternion based
method presented by Comotti in [38]. The author used quater-
nions to estimate the orientation of a single MARG sensor
with respect to a global reference frame. Using quaternion
allow us to overcome the problems introduced by the Euler
angles, for instance thegimbal lock problem and the issues
related to the trigonometric functions. In this algorithm and in
the entire work we use the following convention to represent
a quaternion:q = [ ! x y z ], where ! is the real number.
The proposed algorithm is composed of three parts, the
former estimates the orientation relying on accelerometerand
magnetometer measures, the second produces an estimation
based on the gyroscope angular rate integration, and the
latter fuses the two previous estimations. In the �rst part,the
algorithm estimates the orientation using accelerometer and
magnetometer measures, by minimizing a cost function. By
exploiting the Gauss-Newton method, the algorithm processes



the measurement of gravity and Earth's magnetic �ux to evalu-
ate the actual sensor orientation. LetSa(t), Sm(t) 2 R3� 1 be
the accelerometer and magnetic measures with respect to the
sensor reference frame� S . The Earth reference vectorSz(t),
expressed in the sensor frame, results

S z(t) =

2

6
4

Sa(t)

Sm(t)

3

7
5 2 R6� 1:

Using the same notation, we indicate the reference vector in
the world reference frame� W as

W z(t) =

2

6
4

W a(t)

W m(t)

3

7
5 2 R6� 1:

Taking into account that the gravity vector is always aligned
with the worldz-axis, therefore we can consider

W z(t) =

2

6
6
6
6
6
6
6
6
4

0

0

1

W m(t)

3

7
7
7
7
7
7
7
7
5

2 R6� 1:

Let the orientation estimation error be

� (t) = W z(t) � W M S (t) Sz(t) (5)

whereW M S (t) 2 R6� 6 indicates the rotation matrix between
the sensor frame� S and the world frame� W . The role of the
algorithm is to minimize� , i.e., estimateW M S(t). Let q(t) be
the quaternion representation of the rotation matrixW R S (t),
a single step of the Gauss-Newton optimization method in a
quaternion form produces

qi +1 (t) = qi (t) � Jy
i (t)� (t) (6)

where
Jy

i (t) = ( JT
i (t)J i (t)) � 1JT

i (t):

The subscripti represents thei-th iteration of the optimization
algorithm andJ i (t) is the Jacobian of the error� (t) reported
in Eq. (5). Moreover, as recommended in [38] and [45] we
include a compensation of the magnetic distortion.

In the second phase of the algorithm, an estimation based
on the gyroscope measure is obtained. For each cycle the
algorithm acquires from the sensor the angular ratesS ! x (t),
S ! y (t) andS ! z (t) referred to thex� , y� andz� axis of the
sensor frame� S . These measures can be represented in the
quaternion form

S ! (t) = 0 + i S ! x (t) + j S ! y (t) + kS ! z (t):

We consider

S _g(t) =
1
2

�
Sg(t � �t ) 
 S ! (t)

�
; (7)

the rate of changing in orientation expressed as a in�nitesimal
quaternion variation, whereSg(t � �t ) is the latest estimated

quaternion,S ! (t) = [ 0 S ! x (t) S ! y (t) S ! z (t) ]T is the an-
gular rate vector at the current time,
 is the quaternion
product, and�t is the sampling time.

The last step of the estimation algorithm fuses the quater-
nions estimated in the previous phases. A complementary �lter
is used to combine the two values. On the short term, the �lter
prefers the data from the gyroscope, whereas on the long term,
it gives the greater gain to the data from the accelerometer,as it
does not drift. The �lter, by using two gain factors whose sum
is 1, fuses the gyroscope quaterniong(t) with the quaternion
q(t) computed by the Gauss-Newton method. The resulting
quaternionr (t) is obtained as,

r (t) = � g(t) + (1 � � )q(t)

where0 < � < 1; � 2 R is the gain of the complementary
�lter. The gyroscope orientation quaterniong(t), is obtained
by the following numerical integration

g(t) = r (t � �t ) + _g(t) �t;

where _g(t) is in accordance to Eq. (7). It is worth noting
that g(t) is initialized asg(0) = [1 0 0 0]T . To have a
better estimation, the gyroscope integration relies on thelast
quaternion computed by the whole algorithm. Further details
and information are reported in [38].

Regarding the calibration procedure we use three different
methodologies to calibrate each sensor. For the accelerometer
we exploit the assumption of having the sum of the outputs
equal to the gravity magnitude when the sensor is stable. As
a consequence of this, we adjust the bias and scale for each
axis. For the gyroscope calibration, we estimate the bias by
placing the sensor �xed on a surface; if the sensor is not
moving the angular rate has to be zero. Finally, we perform
the magnetometer calibration using the algorithm proposedby
Merayoet al. in [48].
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